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The homological methods of Fotiadi et al. are applied to the study of the analytic properties of 
an integral over a l-sphere r of a closed meromorphic l-form on the complex quadric of which r is 
the real section. Vanishing cycles are explicitly constructed at points of a certain standard type, and 
the relevant Kronecker indices are evaluated. The Picard-Lefschetz theorem and the decompositiqr 
theorem are then applied to obtain linear relations between the discontinuities round various singU­
larities. The results have a direct physical interpretation in the cases l = 4 and l = 2 in terms of tit. 
Riemann sheet structure of single-loop Feynman diagrams with four, five, or six vertices. They give 
linear relations between the various discontinuity functions, which generalize the results obtained by 
Fotiadi and Pham for the two-particle discontinuity of the five-point loop and for the complete 
Feynman amplitude of the four-point loop. 

1. INTRODUCTION 

THE methods of homology theory have been 
applied by Fotiadi and Phaml

•
2 to the study of 

the analytic properties of various Feynman and 
unitarity integrals. In all the simplest cases, the 
first step is to convert the integral into an integral 
over a hypersphere. Thus, two-particle unitarity 
integrals are expressed as integrals over 2-spheres l 

and Feynman integrals of single-loop diagrams with 
four or more vertices as integrals over 4-spheres.' 
The Picard-Lefschetz theorem and the decomposi­
tion theorem of Fotiadi et al.3 are used to derive 
relations between the discontinuities round paths 
encircling the various Landau surfaces. To obtain 
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the actual form of these relations in a particular case, 
it is necessary to know certain Kronecker indices. In 
the two cases they considered, Fotiadi and Phaml

•
2 

give values for the Kronecker indices in question, but 
they omit the argument leading to these values. We 
shall consider the general case of an integral over an 
l-sphere, construct a set of vanishing cycles a.t a 
point of a certain standard type to be specified, and 
evaluate the relevant Kronecker indices. 

The integral to be studied is of the type 

J(P) = 1 '" fw (1.1) 
r II (p;"z - Wf 

i-1 

where the integrand is a closed meromorphic l-form 
on the complex quadric 

~ = {(zo, Zl, ••• ,Zl) E C'+
1

: 

z~+z~+ ... +z~= II, 
and the cycle of integration is the l-sphere 

r = I (xo, Xl, ••• ,Xl) E RI+l: 

X~ + X~ + ... + x~ 1 } 

1749 
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oriented as the boundary of the canonically oriented 
closed (l + I)-ball 

{(Xo, XI, ••• ,XI) E RI+I: 

x~ + x~ + ... + x~ ~ I}. 

The positive integers l, m, and q i satisfy 

f is a polynomial in Zo, Zl, ... , ZI of degree q - l 
at most. For technical reasons connected with the 
existence of the standard points at which we propose 
to construct vanishing cycles, we shall also have to 
impose the restriction that 

m ~ l + 2. 

w is the closed holomorphic l-form 
I 

W = L (-I)'z, dzo 1\ ... 1\ di, 1\ ... 1\ dzd2:' 
"''''0 

where a hat over a symbol indicates that it is to be 
omitted f~ the product in which it occurs. The 
symbol a· b for a pair of complex n-vectors a = 
(ai, a2, ••• , an) and b = (bl! b2, ... , bn) stands for 
the scalar product 

.. 
a·b = 2: a,b •. 

i-I 

The symbol P stands for the m complex (l + 1)­
vectors Pi' and we shall study the analytic properties 
of J(P) as a function of P E Cm (l+l). In some 
physical applications, the components of the Pi are 
not all independent, they rather depend holomorphi­
cally on some parameter t varying in a complex 
analytic manifold T of lower dimension. Then J 
should be regarded as a function of t rather than 
of P. It usually happens, however, that there is 
still sufficient freedom in the Pi (at least if we allow 

analytic continuation in particle masses) to enable 
us to vary them along paths of the types to be 
described later. We shall therefore regard the com­
ponents of the Pi as independent complex variables 
and consider J as an analytic function of P in C .. (I+l). 

To bring the integral (1.1) into the standard form 
discussed by Fotiadi et al.,3 it is necessary to com­
pactify the ambient manifold 2: of the cycle of 
integration. This is most simply achieved by chang­
ing to homogeneous coordinates. Putting 

(i=OI···l) " " 
and making the change of variable in the integral 
(1.1), we obtain 

J(P) = 1 m Jw , 
r II (PI' {)q; 

(1.2) 

I-I 

where J (tl+l)q-I!(to/tl+l,· .. , tdtl+l) is a 
homogeneous polynomial of degree q - l in 
to, tl, ... , tl+l, W is the differentiall-form 

I 

W = (tl+l)-l L: (-I)'t, dto 
i-O 

/'-.. 

1\ ... 1\ dt. 1\ ... 1\ drdi, 
and Pi is the complex (l + 2)-vector (Pi, -1). 
The new ambient manifold is the complex projective 
quadric 

~ = [(to, tl' ... , rl+l) E pl+I(C): 

r~ + ... + r! = (rl+J2] 
which is compact. r is the homeomorphic image of 
r under the map 'ti1: CI +1 

_ pl+l(C) defined by 
'ti1(zo, ••• , ZI) = (zo, ... , Zl, 1), which maps CI

+
1 

homeomorphic ally onto pl+I(C) - P .!(C), where 
P .!(C) is the hyperplane, rl+l = 0, of pl+I(C). For 
each integer j satisfying 0 ~ j ~ l, it is easy to show 
by eliminating dr i that 

w = (-I)i+I(r;)-I[L: (-I)ir. dS-o 1\ ... 1\ dr, 1\ ... 1\ (ifi 1\ ... 1\ drl+! 
i<i 

Since { = 0 does not define a point of pl+l(C), it 
follows that w is a regular form on ~. 

We write P; for the hyperplane Pi'Z = 1 in C I +!, 
Pi for the corresponding hyperplane Pi' { = 0 in 
pl+l(C), 2:; = 2: n Pi and ~i = ~ n Pi. The 
integrand of (1.2) is holomorphic except on the 
(l - I)-dimensional complex analytic submanifolds 

~; of ~. Let <P be the domain of Cm
(l+lJ defined by 

the inequalities 

IRep;1 < 1 (j = 1,2, ... , m). 

The standard points (to be defined at the beginning 
of Sec. 3) all belong to <P. For P E <P, the cycle r 
of integration does not intersect any of the ~/. 
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Hence, the integral (1.2) is well defined and holo­
morphic in 11>. It follows from the isotopy theorem 
of Fotiadi et aZ.' that (1.2) may be analytically 
continued away from II> along any path on which the 
~j remain in general position, the cycle r of inte­
gration being deformed by the ambient isotopy 
associated with the path. This analytic continuation 
can only be blocked when a point is reached at 
which the ~; are no longer in general position. 
Because of the particularly simple form of (1.2), 
this can only happen when there is a simple pinch 
involving the ~j for j E fJ, where fJ is some subset 
of {I, .. , , m} such that the number IfJl of its 
elements satisfies 1 S IfJl s l + 1. The set of all 
such fJ will be called B. The condition for a simple 
pinch in the system fJ is that there exists a point 
q = (q, ql+l) of pl+l(C) and complex numbers 
Aj (j E fJ) such that 

q2 = (ql+l)2, 

q = L: A;Pj, 
jE{J 

Pj"q = ql+l 

L: A; = ql+l' 
;E{J 

(1.3) 

This is possible if (and only if) P lies on the Landau 
surface Lp whose equation is 

L{J(P) == det (Pi"P; - l)i.;EfJ = O. 

Thus, the singularities of J (P) lie on the Landau 
surfaces L(J, which are complex analytic submani­
folds of Cm

(l+ll of co-dimension 1, and J(P) may be 
continued along any path in 

cm(l+ll - U LfJ. 
(JEB 

J(P) is not a single-valued function of P, because 
some of the LfJ correspond to branch-point singu­
larities. Continuation of J (P) round a closed loop 
based on a point Po of l' and encircling some of the 
LfJ will produce, instead of the original J (Po) inte­
grated over r, an integral of the same form over a 
cycle of integration obtained from r by applying 
the ambient isotopy associated with the loop. Since 
the integrand is a closed form, the integral will 
depend only on the homology class of the cycle 
of integration in the compact homology group 
H~(~ - U;'-1 ~i)' Thus, J(P) depends both on P 
and on the homology class of its cycle of integration. 
The latter tells us which" Riemann sheet" we are on. 
We investigate the Riemann sheet structure by 
studying the effect on J (P) of successive continua­
tions round a sequence of closed loops based on a 
standard point, each loop encircling one of the L{J. 

In Sec. 2, we explain what we mean by vanishing 
cycles and why they are of importance in this prob-

lem. The geometrical construction of the cycles is 
carried out in Sec. 3, where it is shown that they 
are indeed vanishing cycles. The orientation of the 
cycles is specified in Sec. 4, where the relevant 
Kronecker indices are evaluated. Finally, in Sec. 5, 
the decomposition theorem is used to obtain linear 
relations between the discontinuities of J (P) around 
its various Landau surfaces L{J. 

The results obtained have a direct physical inter­
pretation in the case l = 4. The Feynman integral 
corresponding to a single-loop diagram with m 
vertices (where m ;;::: 4) may be cast2 into the form 
(1.2) with l = 4, q; = 1, and J = (f4 + fs)m-'. 
Each factor Pi " { in the denominator of the integrand 
corresponds to an internal line j of the diagram, 
and LfJ is the Landau surface obtained by putting 
the lines j in fJ on the mass shell and contracting 
out all the other internal lines. Thus, our results 
give information about the Riemann sheet structure 
of single-loop diagrams with four, five, or six vertices. 
Similarly, in the case l = 2, we obtain information 
about the two-particle discontinuities (as evaluated 
by the Cutkosky prescription) of Feynman diagrams 
of these three types. 1 

2. THE NATURE OF THE PROBLEM 

We outline the program to be carried through in 
Secs. 3, 4, and 5. 

In Secs. 3 and 4, we construct at each standard 
point a set of relative cycles e{J, one for each fJ in B. 
efJ is a compact l-chain of :z with boundary in ({J):Z, 

where 

({J):Z = U :Z;, 
jE{J 

<In:z = ():z. 
" jE{J 

and a similar notation is employed for the ~j' The 
homeomorphic image of the above chain under ti7 

defines a compact l-chain of ~ with boundary in 
(M~' By abuse of language, we shall denote this 
chain and its relative homology class in H~ (~, (fJ)~) 
by the same symbol efJ. If fJ = {ili2 '" i r }, we can 
write 

the order of the indices being immaterial. If 
1 S 8 S r, we define 

where the iJ i are boundary homomorphisms. Geo­
metrically, the operator iJ i applied to a relative 
cycle gives the part of its boundary which lies in 
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~j' Ai3 the different boundary homomorphisms anti­
commute, it follows that e"" .j, i.H" .i. is antisym­
metric in its superscripts though symmetric in its 
subscripts. The cycle ei

• ·"i. is an (l - r)-sphere 
for r ~ l, and is zero for r = l + 1. It will be shown 
that e""·i. does not intersect any ~j with j E p, 
where P is the complement of fl in {l, ... , rn}, so 
that it defines an element of H~_rC<P) ~ - (~) ~), 
which will again be denoted by ei

' '''
i
., or, when a 

definite order of the elements of fl is understood, 
simply by ell. 

In Sec. 3, we construct, for a given standard point 
Po and a given fl in B a path "xp: [0, 1] -+ Cm(l+l> 
such that 

"Xp(O) = Po, "xp(l) = P Il , 

'\~(t) E ...... r'\ IC",(I+l) UL} f 0 < t 1 1\" ",,'1 l -r, or _ < , 
-rEB 

where 

Pp EL~ 

but 

Pp EI: L-r, for 'Y E B, 

At P p there will be a simple pinch in the system fl 
such that the point q satisfying (1.3) lies on the 
original undeformed cycle of integration r. The 
definition of ep will be extended from Po to the whole 
of "xp in such a way that ell depends continuously 
on t and shrinks to a point (in fact to the point q 
mentioned above) as t -+ 1. The cycle eP, and the 
various relative cycles also obtained from ep by 
repeated application of boundary homomorphisms, 
clearly also have this property. It is for this reason 
that they are called vanishing (relative) cycles. 

Now, it follows from the proof of the Picard­
Lefschetz theorem3 that there exists an open ball 
W in ~ centered on q and a neighborhood V of P Il 
in C",(I+1) such that, for P E V, W n ~i(P) is 
empty for j EE fl, while the W n ~j (P) for j E fl 
are in general positioned in W except when P E LfJ. 
For t sufficiently close to 1, the point "xp(t) lies in V, 
and the corresponding ell is contained in W. Let Qp 
be any such point, and let ap be a closed loop based 
on Pomade up of the part 'A.1l of "xp from Po to Qp 
followed first by a small circuit 'YfJ about P p in a 
positive sense (that which makes arg Lp increase by 
211") and then by a return from Qp to Po along 'A.1l 

described in reverse. The proof of the Picard­
Lefschetz theorem shows that, for 1/31 :::; l, the com­
pact relative homology group H~ (W, (Il) ~ n W) at 
Qp is an infinite cyclic group (written additively). 
As ell is contained in W, it defines an element of this 

homology group, which must in fact generate the 
whole group. Similarly, the reduced homology group 
11~_'/J' (,Pl ~ n W) is an infinite cyclic group and is 
generated by the iterated boundary ell of ep. Accord­
ing to the Picard-Lefschetz theorem, the ambient 
isotopy associated with the small loop 'Yp induces an 
automorphism of H;(}; - U7-1 ~i) at Qp which is 
the identity except in the case p = l ~ Ifll, when an 
element h of H~(}; - U 7-1 ~j) undergoes the change 

(2.1) 

where 

n = (_I)!(I-IPI+l)(I-IPI+2l KI [h, ell], (2.2) 

in which KI means Kronecker index (to be defined 
in Sec. 4). OIPI is the iterated coboundary operator 
as defined by Fotiadi et al.3 This definition differs 
in sign from that of Leray.4 Since different co­
boundary operators anticommute, their order is 
important. If fl = Iii ... i.}, the symbol OIPll 

stands for 

• • i,".i.. • 
U'1 ••• Uir e = u" ... Vir air ... ail e{J, 

which is independent of the order of the symbols 
i l ••• i •. olfl1ell is an element of H~(W - <Pl ~ n W). 
i* is the homology homomorphism induced by the 
inclusion map 

.. 
i: W - (p)~ n W -+ ~ - U ~j' 

i-I 

The formula (2.1) remains valid when Ifll = l + 1, 
as eP then vanishes. Now, the ambient isotopy asso­
ciated with the path 'A.p sends ep and l at Po to the 
corresponding homology classes at Qp and it preserves 
Kronecker indices. It follows that the ambient 
isotopy associated with the loop ap induces an auto­
morphism Y;P of H~(~ - U7-1 ~j) at Po, given by 

h -+ y;p(h) = h + n OIPI l, h E H~(~ - (; ~j) , 
,-I 

(2.3) 

where n is given by an expression having the same 
appearance as (2.2), but involving homology classes 
at Po instead of at Qp. In (2.3), ell is to be regarded 
as an element of H~_,P'('P) ~ - <~) ~), so that Olflll 

is indeed an element of H~(~ - U7-1 ~i)' 
Now, as we saw towards the end of the introduc­

tion, the value of J (Po) on a particular Riemann 
sheet depends linearly on the homology class of the 
cycle of integration corresponding to that sheet. 
Hence, in order to ascertain what happens to J (P) 
when it is continued around a succession of loops 

• J. Leray, Bull. Soc. Math. France 87, 81 (1959). 
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a~, it is sufficient to find the images of the homology 
class of the original cycle of integration r under 
successive applications of the automorphisms if;{J' 
We see from (2.2) and (2.3) that, in order to do this, 
we must know the Kronecker indices of r and the 
51fJ1 efJ with the e{J. These Kronecker indices are found 
in Sec. 4. In Sec. 5, we use the decomposition theorem 
to obtain a basis for the group H~(~ - V;'-1 ~i)' 
and find the matrix representations of the if;{J 
with respect to this basis. Linear relations between 
some of the 51{Jle{J and (when l is odd) r are also 
obtained. These can immediately be translated into 
linear relations between the discontinuity functions 

(2.4) 

The minus sign has been inserted in (2.4) to agree 
with the convention usual among physicists that 
the discontinuity is the original value minus the 
analytic continuation around L{J in a positive sense. 

3. CONSTRUCTION OF VANISHING CYCLES 

By a standard point we mean a point P of Cm(l+l) 

at which the Pi are all real, their lengths IPi I are all 
less than unity, and the following conditions are 
satisfied for each fJ in B: 

(i) The Pi for j E fJ are linearly independent, so 
that their Gram determinant A (P) is positive. 

(ii) A:/l) > 0 for each j in fJ, where A?) is the 
determinant obtained from A (P) by replacing the 
column corresponding to Pi by a column filled with 
l's. 

The condition m ~ l + 2 ensures that such points 
exist. For m = l + 2 one could take PI, '" , Pm to 
be the position vectors of the vertices of a regular 
(I + I)-simplex centered at the origin. We define 

(fJ E B). (3.1) 

Then 

Pi "l'Cfl = 1, for iEfJ. (3.2) 

This implies, since IPil < 1, that 

~~ = {A(/l)r l 1: A:/l) > 1. (3.3) 
iE/l 

Hence, 

L/l(P) = det (P,'Pi - I) .. iE/l = A(fJ) - 1: A~/l) < o. 
jEll 

Thus, a standard point cannot lie on a Landau 
surface of J(P). The vector 

( 2)-1 {" A({J)}-1 " A(') p" = '1C1l '1C1l = £...J L.J.j £.i L.J.j Pi (3.4) 
jEfJ jE/l 

is the perpendicular from the origin onto the (/fJl-I)­
plane through the end-points of the pj with j E fJ. 
Condition (ii) expresses the requirement that the 
foot of this perpendicular should lie inside the 
(lfJl - I)-simplex spanned by the Pi with j E fJ. 
When fJ and 'Yare elements of B such that 'Y is a 
proper subset of fJ, we have the identities 

P.,·~/l = 1, ~fJ·'1C., = '1C~, 
and the inequalities 

P/l·P., = p~, (3.5) 

~~ > '1C~, p~ < p~ (3.6) 

which follow simply from the definitions and con­
ditions (i) and (ii). 

Let P be a given standard point and fJ a given 
element of B. We define the relative cycle efJ to be 
the sum of two chains e~l) and e~2). These chains 
are specified by giving their supports and then 
orienting them. The supports are subsets of ~ eel +1 

and, in giving them, we write z for a general complex 
(l + I)-vector and x and y for its real and imaginary 
parts. The support le~l) I of e~l) is the set of all z in 
C l

+
l such that 

'1C1l'Y = 0, (3.7) 
y2 = 'A2 _ 1, 1 ~ 'A ~ l'1CfJl. 

The chain e~2) is defined to be zero when IfJl = 1. 
For !fJI > 1, the support le~2)1 of e~2) is the set of all 
z in C l

+
l such that either 

'1CfJ'y = 0, 

or 

pj'x 2:: 1 for some j E fJ, (3.8) 

y = (x2 
- 1)' Ix - ~fJl-l (x - '1C1l)' 

The orientations of the chains e~l) and e~2) are given 
in Sec. 4. There it is shown that, for IfJl > 1, the 
boundary ae~l) of e~l) occurs as a term in ae~2), but 
with opposite orientation. Hence, ae~l) does not 
appear in the boundary aep of ep, and the latter is 
of the form ViE{J ajep, where lajepl is the set of all 
z in CI

+
1 such that 

Pi'X = 1, 

p,'X :::; 1 for i E fJ - {j}, (3.9) 

y = (X2 - 1)' Ix - ~pl-l (x - '1C{J), 

when IfJl > 2 and the closure of the above set when 
IfJl = 2. Thus, the boundary of e{J lies in (p) ~ for 
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l,sl > 1 and clearly also for l,sl = 1. Hence, ep is 
indeed a relative cycle of the type specified in Sec. 2. 
If {3 = til, i2, '" , ir} and 0 < 8 < r, we note, as a 
generalization of (3.9), that Ie""'" i.+, ••• ,.1 is the 
closure of the set of all z in C I +1 such that 

x'(~11 - x) = 0, x;c ~p, Pi'X = 1 

for 

j E til ... i.L Pi' X ~ 1 for j E {i'+1 ... i r }, 

Y = (x2 
- 1)1 Ix - ~lIrl (x - ~II)' (3.10) 

For the cycle ell, we have 

lelll = {z E CHI: 

x = ~/l, Pi'Y = 0 "if j E {3, y2 = ~~ - I}. (3.11) 

This is a (l - I~D-sphere if I~I ~ l. For 1{31 = l + 1, 
lelll is empty and ell is zero. To demonstrate that, 
when 1{31 ~ l, III does not intersect any ~i with 
j EE {3, it suffices to observe that, if j EE {3, 

PI'~II - 1 = {A(III}-1 L: Al1l1p,'PI - 1 
• EII 

= _{A(III}-1 A~1Iil < 0, (3.12) 

where {3j is a shorthand for f3 V {j}. 
Our next task is to construct a path Ap for a given 

standard point Po and a given f3 in B. We define 
All to be A~1l followed by A~21, where A~1l is a path of 
standard points starting at Po and ending at a 
point P~(Pi = pD, where (p~)2 is close to unity (so 
that the vectors p~ for j E (3 are almost parallel 
and of length just less than unity) but the (p~)2 
for'Y <t {3 are not close to unity. Thus Pp is close to 
the L.., with'Y C f3 but not to those with'Y <t ,so For 
o ~ t ~ 1, A~21 (t) is defined to be the point given by 

PI = (1 - t)p~ + tq + iAt(p~ - p~) 

for j E {3, (3.13) 

Pi = P; for i EE {3, 

where 

(3.14) 

and A is a small positive number. The corresponding 
value of P.., for 'Y C ~ is given by 

P.., = (1 - t)p~ + tq + iAt(P~ - p~) (3.15) 

as can easily be verified. In particular, 

PII = {t + (1 - thlq, (3.16) 

where 

'1/ = Ip~\· (3.17) 

For 0 ~ t < 1, it is clear that A~21 (t) E ell. Moreover, 
A~21 (t) EE L.., for 'Y C {3, as p~ ;c 1 (see Eq. 3.3). 
This is true because 1m p~ < 0 for 0 < t < 1 when 
'Y is a proper subset of (3 and p~ < 1 for 0 ~ t < 1. 
At Pp = A~21(1) we have 

Pi = q + iA(P~ - pi), for i E /3. 

The conditions (1.3) are satisfied at P II with 

q = (q, 1) E r, Aj = (L: Alillyl A~III', 
.EII 

where the primed determinants are evaluated at P;. 
Thus PilE LII• However, P II EE L.., when'Y is a proper 
subset of ~, as 

p~ = 1 - A2(p~2 - p~2) < 1 at P II , by (3.6). 

By choosing A~1l so that P~ is sufficiently close to 
LII but far from the L.., with 'Y <t ,s and by taking 
a sufficiently small value of A, we can ensure that 
A~2) does not intersect any L.., with 'Y <t {3. The 
combined path Ap will then meet all the requirements 
set out in Sec. 2 . 

We must now extend the definition of ep to the 
whole of All' As it is already defined on A~1l, we need 
only specify it on A~21. Here we put ell = e~1l + e~21, 
where e~ll is given by (3.7) with 

~II = {t + (1 - t)'I/} -lq, (3.18) 

e~21 is zero if \~\ = 1, and \e~21 1 is defined for \(31 > 1 
to be the closure of the set of all z in C I

+
1 of the form 

z = i2 + i(~~ - ~2rl(~2 - lY(~2 - ~II) (3.19) 

with ~II given by (3.18), where 

l;; = (1 - t)~ + tq + iAt(P~ - ~) (3.20) 

and ~ is a real (l + I)-vector belonging to the set E 
defined by 

p~.~ = (p~)\ ~;c Pp, p~.~ ~ ~2 for some i E /3. 
(3.21) 

The above conditions clearly define (to within 
orientation) a chain ell of ~ whose boundary belongs 
to (I/)~' and this definition agrees at P~(t = 0) with 
the previous definition of ep at standard points. It 
remains only to show that ell shrinks down to the 
point z = q as t -71. Now e~1l clearly does have this 
"vanishing" property. Also ~p -7 q as t -7 1. It is 
therefore sufficient to show that 

z - ~II = [1 + i(~~ - ~2r\:2 - lYJ(f2 - ~/l) 
(3.22) 
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with ( given by (3.20) tends to zero as t -7 1 uni- 1(1 - p~[«(2 - p~)t - i Ippl (1 - ~lrlr' 
formly in ~ for ~ in E. For this purpose, it is con- :$; (1 _ T + Tl1)-2T(1 _ 11)(2 _ T + Tl1)' (3.28) 
venient to rewrite (3.22) in the form 

Z - 'J':IJ = (1 - p~((2 - p~)i - i Ippl (1 - (~irl 

X «(2 - p~-t«( - (2'J':p), (3.23) 

to put 

T = 1 - t (3.24) 

and to investigate the behavior of (3.23) as T -7 O. 
We shall obtain an upper bound on Iz - 'J':1l1

2 for 
~ E E which tends to zero as T -7 0, where lal2 for 
a complex vector a stands for the scalar product of 
a with its complex conjugate. A simple calculation 
shows that 

1(2 _ p~l-l I( - (2'J':1l1 2 

= 1 + (1 - T + Tl1)-2[X2(1 - T)2 + T~(~2 - 11~ 

< 1 + (1 - ., + Tl1)-2[X2(1 - T)2 + .,~(1 - 112
). 

(3.25) 

Also, 

«(2 _ p:)i _ i Ipll! (1 _ (~t 

- -i{Z + (1 - ., + "11) 

X [T(1 - 11)(2 - T + Tl1) + ~]t}, (3.26) 

where 

Z = [X + i(1 + $A)T](~2 - 112
)'.. (3.27) 

For T sufficiently small, 0 :$; arg Z :$; -t1l' inde­
pendently of ~. Hence 

Re {[T(1 - 11)(2 - ., + Tl1) + ~;} 
~ [.,(1 - 11)(2 - ., + "11)]; 

so that 

1«(2 - p:)t - i !PIl! (1 _ (2)11 

~ (1 - ., + Tl1)[.,(1 - 11)(2 - T + 1'11)];, 

and 

Thus, Iz - 'J':jJ12 cannot exceed the product of the 
right-hand sides of (3.25) and (3.28), a quantity 
which tends to zero as T -7 O. 

4. EVALUATION OF KRONECKER INDICES 

Before giving the orientations of the chains e~t) and 
e~2) at a standard point, we make some general re­
marks about the orientation of differentiable mani­
folds (in general manifolds with boundary) embedded 
in R". Let M be a connected orientable m-dimen­
sional differentiable manifold in R" (0 < m < n), 
and let Xo be any point of M. There are only two 
possible orientations for M. For a given local co­
ordinate system (Xl, ••• xm) is the neighborhood of 
Xo, these two orientations will take the values 1 and 
-1 respectively. That which takes the value 1 will 
be called the orientation determined by the local 
coordinate system (Xl, ••. , xm). Two local coor­
dinate systems (Xl' ••• , X ... ) and (x{, ••• , x~) in 
the neighborhood of Xo determine equal or opposite 
orientations according as the Jacobian 

a(X1" ... ,x",')/a(XI, '" ,xm) 

is positive or negative. 
An ordered set of m vectors eh ... , e .. of R", 

whose (orthogonal) projections e1, ... , e .. onto 
the tangent m-plane T to M at Xo are linearly 
independent, determines an orientation of M, 
namely that determined by the local coordinate 
system (el·x, •.. , em·x) in the neighborhood of 
Xo. This will be called the orientation determined by 
eh ••• , em at Xo. Two sets of vectors {el, .•. , em} 
and {er, ... , e~ I determine equal or opposite 
orientations according as det (a, ·eD is positive or 
negative. In the special case where tel, ... ,eml 
and fer, ... e~} span the same m-dimensionaI 
subspace of R" (not necessarily T), the orientations 
determined by them at Xo will be equal or opposite 
according as det (e;·e/) is positive or negative. 

In the sequel we shall make repeated use of the 
relations 

det (ai, ... , a"., b"'+l' ... ,bJ det (all' .. , a.., b",+/, ... ,b,,') = det (a.-as) det (b.·bl), (4.1) 

det (au'" ,a"., b .. +1', ... ,b.') det (a/, ... ,a".', bm+t', '" ,b .. ') = det (a.·a/) det (b.t'·bz'), (4.2) 

which hold when the real n-vectors all ... , am, a:, .•. , a!., b",+ll ... , b", b!.+11 ... I b~ are such 
that each a; is orthogonal to each bi and each a~ is orthogonal to each b~. Here, det (all ..• , a .. , 
b .. +h ••• , b,,), for example, means the determinant of the n X n matrix whose columns are al, ... , a .. , 
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bm +1 , , b ... The proof of (4.1) and (4.2) is a or 
straightforward application of the identities 

det (A) = det (A '), 

det (A) det (B) = det (AB), 

where A and Bare n X n matrices and A t is the 
transpose of A. 

Now the subset !e~l)l of Cl+l defined by (3.7) is 
an l-dimensional differentiable manifold with bound­
ary. We give it the orientation determined by the 
global coordinate system (el'Y, ... , e"y) where 
{e l , ••• , ell is an orthonormal set of real vectors or­
thogonal to 1C1I and such that det (1C/l, ell ... , el) > o. 
Clearly, any two such orthonormal sets determine 
the same orientation of le~lll. The oriented manifold 
determines an l-chain of ~ which, by definition, is 
e~l). In terms of the given coordinate system, le~l) I 
is given by 

(e1,y)2 + (e2·y)2 + ... + (e,'y)2 :::; 1C~ - 1, (4.3) 

and it is diffeomorphic to a closed l-ball. Its bound­
ary is the (l - I)-sphere 

x == 1C/l, 1C~,y == 0, 
(4.4) 

(e1,y)2 + ... + (el,y)2 == 1C~ - 1. 

The orientation of the boundary induced by that 
of le~lll is clearly that determined by the local 
coordinate system (e2 'y, ... , e"y) in the neighbor­
hood of the point 

(4.5) 

This oriented boundary determines the cycle ae~l). 
The set le~2) I defined by (3.8) is a subset of the 

differentiable l-manifold with boundary M, defined 
as the subset of Cl

+
1 in which either 

1C~'y == 0, (4.6) 

and, since the left-hand side is, by hypothesis, posi­
tive, it follows that det (a, ~aD is positive. Thus the 
orientation of M determined at Xo by AiJ ... , A, 
is independent of the choice of aI, .,. , a/. It is 
also clear, by considering overlapping neighborhoods, 
that this orientation is independent of the point Xu. 
We now show that this orientation is in fact the 
same as that already defined for M, i.e., it is opposite 
to that determined by the global coordinate system 
(el,y, '" ,el·Y)' To do this, we shall pick a particu­
lar point Xo in M - aM, and a particular set of a., 

X'(1C/J - x) - 0, x' > I, x ;c 1C~, 

Y == (x2 
- I)t Ix - 1C/Jr' (x - 1C~). (4.7) 

Let {el, '" , e,} be as in the definition of e~l). Then 
(e1 'y, ... , e,·y) provides a global coordinate sys­
tem for M and we give M the orientation opposite 
to that determined by this coordinate system. The 
orientation of e~2) is now defined to be that induced 
by the above orientation of M. The points of M 
all satisfy 

o < (e1·y)2 + ... + (e,·y)2 :::; 1C; - I, (4.8) 

and its boundary aM is given by (4.4) or (4.6). 
Clearly aM has the orientation opposite to that of 
ae~1) . Since ae~2) contains the whole of aM, it follows 
that ae~l) is canceled out in the sum and does not 
appear in aell' 

It is generally more convenient to give the orienta­
tion of M, and hence of e~2), in terms of x rather 
than y. Let us identify Cl+l with R2

'+2 by the 
correspondence 

z = x + iy ~ X == (x, y). 

Suppose Xo = (xo, Yo) is a point of M - aM, and 
{aI, .. , ,all a set of real (l + I)-vectors orthogonal 
to 2xo - 1C~ such that 

det (2xo - 1Cp, ai, ... , al) > O. 

We show that the orientation of M determined at 
Xo by the (2l + 2)-vectors AI •..• , Al defined by 
A, = (a" 0) is independent of the choice of the set 
{ai, .. , , azl. For let {af, ... , an be another pos­
sible choice and put M = (a~, 0). As {AI, .. , , Ad 
and {M, ... ,An span the same l-dimensional sub­
space of R21

+
2 we need only show that det (A, ·AD = 

det (a"aD is positive. But (4.1) gives 

and show that det (A.·E j ) < 0, where E j = (0, et). 
If Xo = (xo, Yo), we define, for every vector v of 
R'+l orthogonal to 2xo - 1C(J, 

v = (x: - I)i IXc - 1C1l1-
1 

V 

Then 

- (x~ - 1)-· Ixo - 1C1l1-
3 (1C~ - 1) 

X [v·(xo - 1CIl)](Xo - 1C(J). 

AA ( 2 + -2)-1 2( - ) i = a, ai a. a" a. . 

(4.9) 

(4.10) 
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It is therefore sufficient to show that det (I. ,ej) < O. 
We now make the choice 

Xo = ':ell COSI a + e1 l':elll sin a cos a, 

Yo = (x~ - 1)1 1%0 - ':e1l1-1 (%0 - ':ell), 

a 1 = e 1 cos 2a - 1':ellr1 ':ell sin 2a, 

a, = e" for i = 2,3, ... , l, 

where 0 < a < cos-1 (1':e1l1- 1
). A short calculation 

shows that 

il = -1':ellr2 (':e~ cos2 a - 1)-1 

X {I':elll sin a(2'1C~ cor! a - 1)e1 

+ cos a(':e~ cos 2a - 1)':e1l} , 

i, = (I':elll sin a)-I(':e~ cos2 a - 1)ie ., 

for i = 2, 3, ... , l. 

Hence, 

d t (-) I I-I I' )-(1-2) e a"e; =-':ell ,sma 

X (2'1C; cos2 a - 1)(':e~ cos2 a - 1)11-1 < O. (4.11) 

Now that ell has been oriented, the orientations 
of the (relative) cycles obtained from it by repeated 
applications of boundary operators are completely 
determined. In order to evaluate the necessary 
Kronecker indices, we shall need to know the values 
which these orientations take in appropriate local 
coordinate systems. 

First, we consider the orientations of the chains 
iJjeli (j E fJ) which make up the boundary of efJ for 
the case ItJl > 1. Let Xo = (xo, Yo) belong to the set 
liJjelll given by (3.9) but not to any liJ.elll with i ¢ j. 
The orientation of ell is that determined by a local 
coordinate system in the neighborhood of the bound­
ary point Xo of the form (a l -x, ... , ai-X), where 
we choose 

and take a2 , ••• , a, to be vectors of R'+l orthogonal 
to both 2xo - ':efJ and a1 and satisfying 

det (2xo - ':ell, ai, ... a,) > O. 

This is possible because a 1 ¢ 0 (since 2xo - ':efl and 
':ej cannot be parallel). For (x, y) in ell close to Xo, 

we have 

':ej'(X - xo) = a1 '(x - xo) - l':eflr
2 

X [':ej' (2xo - ':efl)](X - XO)2 ~ O. (4.12) 

Thus, in terms of the orthogonal projection e~ of ell 
onto the "real" subspace y = 0 of R 2

'+2, we see 
that Al is in the direction of the normal to iJe~ at 
(xo, 0) lying in e~ and pointing towards its interior, 
while A2, ••• , A, are tangent vectors to iJe~ at (xo, 0). 
The orientation of iJjefl therefore takes the value -1 
in the local coordinate system (a2 -x, '" , al'x) in 
the neighborhood of Xo. By (4.2) we have 

I 
(2xo - ':ell) 2 

, 

= ':ej,(2xo - ':ell), 2 ':ej -

The right-hand side is positive because the Gram 
determinant is positive and the first factor equals 
':e~(':e~ - ':CD which is positive by (3.6). Hence, we 
could equally well have imposed on a2, '" , al the 
condition that they be orthogonal to both 2xo - ':C1l 
and ':ej, and that 

det (2xo - ':efl, ':ej, a2 , •• , , a,) > O. 

Next, we consider the general case of the chains 
e"···'·"+, ... ,,, where 0 < 8 < r,8 < l, tJ= {ill'" ,i,}. 
Let Xo= (Xo, Yo) be any point ofthe set Ie""'" ;'+1 ••• ,,1 
given by (3.10). Suppose the vectors ao+l, ... , a, of 
R'+1 are orthogonal to 

2xo - ':ell, ':ei" .. , ,':ei. 

and that 

det (2xo - ':ell ':e. . .. , '1' 

(4.13) 

We shall prove that the orientation of e"" ." ,.+,' .. ,_ 
takes the value -1 in the local coordinate system 
(a.+1 'X, ••• , ai-x) in the neighborhood of Xo. The 
proof is by induction on 8. We have just shown that 
it holds for 8 = 1. Let us suppose that it holds for 
the chain e"""'-' , •... ,,' where 8> 1. Before com­
pleting the proof, we introduce some convenient 
notations. If b l , .,. , bm are linearly independent 
vectors of R", we write A(bJ , ••• , bm) for the Gram 
determinant det (b i • b;), which is necessarily positive. 
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If c is another vector of R", such that bl, , b .. , c is linearly independent, we write 

cJ.(bll ... , b .. ) = [a(bll ... , b ... WI 

for the part of c orthogonal to bl, ... , b ... Let 
X ( ) b . t f·'····· o = Xo, Yo e a porn 0 e •• +, ... '" a. = 
=/;(2xo - =(J, ='" ... , =i._,), and al+l, ... , a , vec-
tors of R ' +

I orthogonal to 2xo - ={J, =i" ... , =,._11 
a. such that 

det (2Xo - =(J, ='" ... ,=,.-11 a" a,+I, ... , a,) > O. 
(4.14) 

By:-the induction hypothesis, the orientation of 
e" ,. ·i,_. i." .• , takes the value -1 in the local co­
ordinate system (a. 'x, .,. , a"x) in the neighbor-

b~, bl ,b2 , bl,b .. , bl,c 

b2 ,bl, b~, b2,b ... , b2,c 

b ... ,bl, b .. ,b2 , b!, b .. ,c 

bl, b2, b .. , c 

hood of Xo. The points (x, y) of e·'·····-· i •••• '. close 
to Xo satisfy 

= •. ,(x - Xo) 

= a,'(x - xo) - c(x - XO)2 ~ 0, (4.15) 

where c is independent of x. Hence, taking note of the 
difference in sign between (4.12) and (4.15), we see 
that the orientation of e""'" •• +, •••• , takes the value 
-1 in the local coordinate system (a, +1 'X, .•. , a"x) 
in the neighborhood of Xo. By (4.2) we have 

det (2Xo - =(J, ='" ... ,= •• _" a" a'+1, ... , a,) det (2xo - =(J, =i" ... '=i., a,+I, ... , a,) 

Hence al+ l , ••• , a, satisfy (4.14) if (and only if) they 
satisfy (4.13). This completes the induction proof of 
the statement made at the beginning of this para­
graph. The corresponding statement and its proof in 
the case, 8 = l, r = l + 1 (whe'n e·· .. ·'· •. +, .... , re­
duces to a pair of points) are obvious modifications 
of the above. 

Finally, we have to consider the orientation of the 
vanishing cycle elJ = e"· .. •• = iJ •• e·' .. ···-· '.' We 
consider only the case r < l, the modifications 
necessary in the case r = l being obvious. Let 
{e., ... , e,l be an orthonormal set of vectors in 
R'+1 orthogonal to ='" ='.' ... , =" and such that 

(4.16) 

= a(2xo - =(J, ='" ... ,=i.) a(a'+1' ... , a,) > O. 

Our discussion of the orientation of e~1) and its 
boundary shows that this is the case when r = I~I = 1. 
We can therefore assume r > 1. Consider the point 
Xo = (xo, Yo) of e" ..... --.. defined by 

Xo = =". + (={J - =".) cos2 ex 

+ e. I={J - =".1 sin a cos a, 

Yo = (x~ - 1)1 Ixo - ={Jr l (xo - =(J), 
where'Y = {il , ••• , i r - l } and ex satisfies 0 < a < tK. 
Let us define 

a. = e. cos 2a - I=~ - =". I-I (={J - =".) sin 2a, 

ai = e. for i = r + 1, ... I l. 

We show that the orientation of ei
•• .... takes the Then the ai are all orthogonal to 

value ( -1) .-1 in the local coordinate system 
(er+l'Y, ... , e,'Y»)n the neighborhood of the point 2xo - ={J, =i" ... ,="_,, 

J: = =/f, Y == e.(=: - 1)1. It follows by (4.1) that 

det (='"' ... '="-11 2Xo - =(J, ar, .,. ,a,) det (=", .. , '="-1' 2xo - =(J, e" ... , e,) 

= a(=i" ... ,=,,_., 2Xo - =~ COB 2a, 
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and by (4.2) that 

det (~'" .,' , ~io' e., •.• , el) det (~id •.• , ~"_" 2xo - ~fh er, ... , el) 
2 

-:Cia , '7C'i s ·"Xi., 'nil -"2'Cir_l' ~ •• ,(2xo - ~II) 

= 
2 ~.,_. ,(2xo - ~II) '7C'i r- 1 --:Cia' '1Ci r _ l , 

-,cit' -='1' 1Ci r -"2'Ci,._l' -:e.,' (2xO - -:ell) 

2 
1Ci" ":Cit --"Ci., '2Ci1 ·"2'C,,._l' 1Ci a -'X.,. 

= 
2 

=i,._1 -'1CilJ "2'Ci r _ a , 1C,,._1 -'X.., 

11:.,. -":ell' '1Ci,. --=i,.-I' 1'Ci,. -"1C.., + (-:e~, - -:e. '-:e ) COS 2a ., ., 
= .1(-:ei., ... , -:e.,_.)(-:e~, - -:eOr '-:e.,) COS 2a, 

where we used in the last step the fact that -:e., is a linear combination of -:ei., .. , , -:ei,_ •• Since 7:: r -

7:i,'7:., > 0 by (3.12) and the Gram determinants are positive, it follows from (4.16) that 

det (-:ei., •.. ,-:ei,_., 2xo - -:ell, ar, ... ,a,) = (_1),-1 det (2xo - -:ell, -:eid ... ,-:ei,_., ar, ... , al) > O. 

We conclude that the orientation of e .. · .. ·'-.. , takes the value (-1)' in the local coordinate system 
(a,·x, ar+l'X, ... , al'x) in the neighborhood of Xo. From (4.9) we find after some reduction that 

ir = -I-:ell - -:e., 1-2 [-:e~ + (-:ell - -:e.,)2 cos2 
a - Irt 

X {I-:ell - -:e., 1 sin a[-:e~ + (-:ell - -:e.,)2 COS 2a - I]e, + COS a[-:e~ - 2(-:e1l - -:e.,)2 sin2 
a - I](-:ell - -:e.,) I, 

i. = (I-:ell - -:e., 1 sin a)-l[-:e~ + (-:ell - -:e.,)2 cos2 a - I]tei' for i = r + I, ... , l, 

whence it is easy to show that det (a, 'ej) is negative. 
The orientation of ei• "·i,-. i, therefore takes the 
value (-1) r-l in the local coordinate system 
(e, 'y, e,+l 'y, .. , , el'Y) in the neighborhood of 
Xo. But, by choosing a small enough, we can make 
Xo arbitrarily close to the point Xl of e(3 defined by 

Xl = (Xl' Yl); Xl = -:ell, Yl = er(-:e~ - l)t. 

Hence, the orientation of ei
• ,,·i,-. ir takes the 

value (-1) r-1 in the local coordinate system 
(er,y, e,+I'Y, •.. ,el'Y) in the neighborhood of Xl' 
As the points of e" "·i

r
-. i, close to Xl satisfy 

(er'y)' + (e,+l'y)2 + .. , + (el'Y)' ~ -:e~ - 1, 

it follows that the orientation of e" ·"i r takes the 
value ( -1) ,-1 in the local coordinate system 
(e,+l'Y, ... , el'Y) in the neighborhood of Xl' 

Weare now in a position to evaluate the various 
Kronecker indices that will be needed in Sec. 5. 
First, let us recall the definition of the Kronecker 
index for chains of the special type we have been 
considering.6 The Kronecker index KI [cl, c2] of a 
p-chain CI with a q-chain C2 in a differentiable mani-

& G. de Rham, Variet~ differentiable8 (Hermann & Cie., 
Paris, 1960). 

fold M of dimension n = p + q is only defined when 
Cl and C2 have a finite number of points of inter­
section. In the neighborhood of a point of inter­
section P, we can find a local coordinate system 
(Xl, ••• , X,,) for M such that Cl is given locally by 
Xp+l = .. , = X,. = 0 and C2 by Xl = ... = Xp = O. 
Let Ell E2, and E be the values of the orientations 
of ClI C2, and M in the local coordinate systems 
(Xl, ... , xp), (Xp+l, ... , X .. ), and (Xl' '" , X.) 
respectively. The orientations of Cl and C2 will be 
said to agree or to disagree at P according as EIE2 = E 
or EI E2 = - E. The Kronecker index KI [Cl, C2] is 
defined to be the number of points of intersection 
at which the orientations of Cl and C2 agree minus 
the number at which they disagree. 

Consider first the Kronecker index KI [1', ell], 

where fJ E B. It is clear that l' and ell have only one 
point in common, namely the point 

X = l-:elll-l -:ell, Y = 0 (4.17) 

of C l +\ which belongs to eJll. Let {e l , ••• , ed be 
an orthonormal set of vectors in R I +l orthogonal to 
-:ell, such that 
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Then the orientation of r takes the value 1 in the 
local coordinate system (el 'x, '" , e"x) in the 
neighborhood of the point (4.17), while that of 
eil) takes the value 1 in the coordinate system 
(el'Y, '" , el'Y). Moreover, the points of r satisfy 
e, 'Y = 0 (i = 1, ...• l), while the points of e(i close 
to (4.17) satisfy e.,x = 0 (y2) (i = 1, ... , l). But 
the canonical orientation of the complex analytic 
manifold ~ takes the value 1 in the (real) local 
coordinate system 

(el,x, el,y, ea'x, ea,y, ..• ,el'x, el'Y)' 

and therefore takes the value (_1)(1/2)1(1-1) in the 
local coordinate system 

(el'X, et,x, ... , e,'x, e1 ·y, ea'y, ,., ,e/'Y)' 

We conclude at once that 

(4.18) 

The other Kronecker indices that we have to 
evaluate are those of the form KI [{jI'Yle'Y, e,8), where 
fJ, 'Y E B. It follows from the duality of boundary 
and coboundary operators with respect to the 
Kronecker index that 

KI [{jI'Y1 e'Y, e/l] = KI [e'Y, al'Yl e/l]' 

More precisely, if 'Y = {ii, ... , i.}, we have the 
relation 

= (-1)'(~~ - ~~) A(~." ... ,~ •• ), 

whence 

(-I)"det(~T-~fJ'~'''''' ,~,.,ea+l'·" ,e,) > 0 

since 1t; > ~; by (3.6). We define vectors E i , F
" and F~ in R2 !+2 by 

E, = (e., 0), 

F~ = (- I~"Y - ~/lrl (~~ - I)' e., e.) 

for i == 8 + 1, ... , 1. The orientation of e"" '" 
takes the value (_1),-1 in the local coordinate 
system [F.+1·(X - Xo), '" , F!,(X - Xo)] and 
therefore also in the local coordinate system 
[F~+t'(X - Xo), .. , , Ff·(X - Xo)] in the neigh­
borhood of Xo, since the F i lie in the tangent 
(l - s)-plane to e""';' at Xo and 

det (F"Fn = det (e,'e;) > O. 

= KI [e··· .. '·, a •. '" a,. e,]. 

As the boundary of e(3 is in (,8)~, it follows at once that 

KI [{jI'Y I e\ ell] = 0, if 'Y <t: fJ. (4.19) 

For fJ = 'Y we have 

KI [{jllli ell, e,8] == KI [l, e~ 
= (_I}i(/-IIII)(/-IIII+U + (_1)1(1-1/11) (/-1/11-1) (4.20) 

by Cartan's formula for the Kronecker indices of 
hyperspheres.6 

There remains now only the case in which 'Y is a 
proper subset of fJ. Suppose fJ = lih '" , i.}, 
'Y = {ii, ... , i.}, where 0 < 8 < r. We have to find 
the Kronecker index 

KI[~I"I" , = Klr·.·.... ........ ] 
(J e, e'J l6 ,e '_+1""1' • 

Now e""'" and e"'"'' •• +. '''i, have a single point in 
common, namely the point Xo = (xo, Yo), where 

Xo = ~,., Yo = (~~ - I); I~,. - ~/lI-l (~,. - ~(8). 

Let {e.+1t ••• , ed be an orthonormal set of vectors 
in R'+l orthogonal to ~'" ~'" ... , ~i.' ~,. - ~,8 
and satisfying 

By (4.2) it follows that 

The orientation of e·· ... ,. i.h .... r takes the value 
(-1) a-I in the local coordinate system 

The points X of e,,·" i • satisfy 

E,'(X - Xo) = 0, for i = 8 + 1, ... , l, 

while the points of e" ,,·i. i,+ .... ;r close to Xo satisfy 

F~,(X - Xo) = 0ClX - XOI2), for i = 8 + 1, .. , , l. 

Now, the canonical orientation of (T) ~ is that deter­
mined by the vectors 

• E. Cartan, OEuvres completes (Gauthier-Villars, Paris, 
1952), Pt. I, Vol. 2, p. 1227. 
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at Xo. It therefore takes the value (-1) (1/2)(1-0)(1-1+1) 

in the local coordinate system 

[F.+ 1 ·(X - Xo), '" , FI·(X - Xo), 

EO+l'(X - Xo), ... , EI·(X - Xo)], 

and also, as may easily be verified, in the local co­
ordinate system 

[F:+1 ·(X - Xo), '" , Ff·(X - Xo), 

E o+1 '(X - Xo), ... , EI·(X - Xo)]. 

Therefore, 

KI [ ...... , " .... , ] = (-1),(1-0) (1-0+1) e J e -1_+1 ••• '" 

so that 

when 'Y C fJ, (4.21) 

5. RELATIONS BETWEEN DISCONTINUITIES 

It follows from the decomposition theorem of 
Fotiadi et al.s that, when the ~j are in general posi­
tion in~, 

~ H~(l: - D l:j) 
i-I 

C::! EB al~1 H~_I~I«~)l:), (5.1) 
~cll ... • .... -11 

where the direct summation is over all subsets fJ of 
{I, ... , m - I} (including the empty set 50) and 
the iterated co boundary homomorphisms alill are 
all injective. The first isomorphism is that induced 
by the homeomorphism of pl+l(C) - p .. onto C I

+1 

obtained by treating P", as hyperplane at infinity. 
These isomorphisms hold in particular at any 

standard point, and may be used to obtain linear 
relations between the ell, where 

ell = allliell, 

for fJ C {I, ... , m}, 1 ~ IfJl ~ l, (5.2) 

e0 = (-l)lr. 

We consider first the case m ~ l. As (II) l: has the 
(l - IfJJ)-sphere as a deformation retract, it follows 
that each of the H~_IIII«{J)l:) occurring in (5.1) is 
an infinite cyclic group. Hence, H~(~ - U;'-1 ~j) 
is a free Abelian group of rank 2"'-1, and the ell with 
fJ C {I, '" , m - I} form a basis for it. Now, the 

compact relative homology group HH~, U;'-1 ~;) is 
dual to the closed homology group H~(~- U~-1 ~j), 
and hence (since ~ is compact) to HH~ - U;'-1 ~j), 
the duality being realized by the Kronecker index. 
Therefore, HH~, U;'-1 ~;) is also a free Abelian 
group of rank 2"'-1 and has a basis {lie} dual to the 
basis {ell} of HH~ - U;'.1 ~j) in the sense that 

KI [ell' 'Ye] = all'Y' for fJ, 'Y C {I, ..• , m - I}. 
(5.3) 

This dual basis is given by 

lie = (_I),(I-IIlI)(I-IIlI-ll(ell - ell ... ), 

for fJC {I,· .. ,m-1}, 1 ~ IfJl ~ l, (5.4) 

0e = (-1) ,I (I + 1)e .. , 

as may readily be verified using (4.18), (4.19), (4.20), 
and (4.21). 

Since the ell with fJ C 11, '" , m - I} form a 
basis of H~(~ - U;'-1 ~j), the remaining ell may 
be uniquely expressed as linear combinations of 
them. Thus, if 'Y C {I, ... , m - 11, there exist 
unique integers nll-y such that 

e'Y'" = r; nll-yell' (5.5) 
/lcll ... • ... -11 

On taking the Kronecker index of (5.5) with lie and 
applying (5.3), one finds that 

nll'Y = KI [e'Y'" lie]. 

Substituting from (5.4) and applying (4.18), (4.19), 
(4.20), and (4.21) we obtain finally the relations 

e'Y'" = {(_1)1-I'Y1 - l}e'Y 

r; (_l)t(lIlI-I'YI)(21-I Il I-I'YI-llell (5.6) 
'Yc/lcU, ....... -1/ 

II,..'Y 

for all 'Y C {I, '" , m - I}. 
Now, the basis of H~(~ - U;'.1 ~j) consisting 

of the efJ with fJ C {I, '" , m - I} determines a 
faithful representation of Aut H~(~ - U7-1 ~j), 
in which each automorphism is represented by a 
non-singular 2".-1 X 2".-1 matrix with integer ele­
ments. In particular, the automorphism '1/;11 defined 
by (2.3) is represented by the matrix A (Ill, where 

'l/;Il(e a ) = r; A~~e'YI 
'Ycll ... • .... -11 

ex C {I, ... , m - 11. (5.7) 

It is convenient to write 

(5.8) 

Applying (2.2), (2.3), (4.18), (4.19), (4.20), and 



                                                                                                                                    

1762 J. B. BOYLING 

(4.21), we find that, for fJ C {I, ... , m - I}, 
fJ ¢ 0, 

B!!~ = 0, unless a C fJ and 'Y = fJ, 
BJP,1 = _(_I)i(IPl-lal+U(21-IPI-IIII), 

when a C fJ, a ¢ fJ, (5.9) 

BJg) = -[1 + (-I)I-IPI], 

while 

B!!:) = 0, unless a C fJ C 'Y, 

B!!:) = _(_I)i<l'YI-l al+U(2/-1'Y1-l all(_I)I-IPI 

when a C fJ C 'Y, 'Y ¢ fJ, (5.10) 

B~~") = (_I)l<IPl-l al+l)(21-IPI-l a ll[1 _ (_1)/-1111], 

when a C fJ. 

The basis we have been using suffers from a cer­
tain lack of symmetry in that the element m of 
{I, .. , , m} plays a preferred r6le. It is difficult to 
obtain a more symmetric basis so long as we deal 
with homology with integer coefficients. However, 
since the closed form integrated in (1.2) defines an 
element of a (de Rham) co-homology group with 
complex coefficients, we can obtain just as much 
information by considering homology with complex 
coefficients. Then, instead of the free Abelian group 
HH~ - V7-l };;) of rank 2"'-" we have a 2m-I_di_ 
mensional complex vector space H~(~- V7-l };;; C). 
Identifying the ep with their images under the 
natural homomorphism of HH}; - V7-l };;) into 
mc}; - V7-l };j; C), we see that the ep with 
fJ C {I, .. , , m - I} form a basis of the vector 
space H~(}; - V;:'l };j; C) and the linear relations 
(5.6) still hold. Similar relations may be obtained 
by choosing elements of 11, ... , m} other than m 
to play the preferred r6le. By repeated application 
of these relations, we can express the ell with l - IfJl 
odd as linear combinations with rational coefficients 
of the e(J with l - IfJl even. In fact, if l - IfJl is odd, 
we have 

ell = 1: ci(I'YI-IPI+ue'Y' (5.11) 
'Y=>II 

I-I "I I even 

where the coefficients Cr may be obtained by solving 
the recurrence relations 

.. (2n) ~ (-1)' 2r _ 1 Cr = 1. 

The first six coefficients are 

Cl = -j, 

C, = -¥, 

Ca = -j, 

Cs = -.!l..}l. 

(5.12) 

(5.13) 

Thus the ep with l - IfJl even constitute a. symmetric 
basis of the vector space H~(~ - Vi-l ~;; C). 

Corresponding to the automorphism y;p of 
H~(}; - Vi-l ~;), we have a non-singular linear 
transformation T(J of H~(~ - V7-1 ~;; C) onto 
itself, which is still given formally by (2.2) and (2.3). 
In terms of the basis consisting of the e(J with 
l - IfJl even, TfJ is represented by the non-singular 
2m

-
1 X 2",-1 matrix M(P) with rational elements, 

where 

T(J(e a) = L: M<,:~e'Y' l - lal even. (5.14) 
1-i'Y I even 

Using (2.2), (2.3), (4.18)-(4.21), and (lUI) we find 
that 

M (II) -" +N(II) 
'fa - U"(c:I "(a) 

where 

N<':~ = 0, unless 'Y = fJ and a C fJ, 
N~"1 = _(_I)i(I(Jl-lall, 

when a C fJ, 

N~:) = -2, for l - Ifll even, 

and 

a ¢ fl, 

N<':~ = 0, unless a C fJ C 'Y, when 

N «(J) (I)i(IPI-la l- U 'Ya = - Ci(I'YI-IIII+lll 

for l - IfJl odd. 

(5.15) 

(5.16) 

(5.17) 

We now consider the cases m = l + 1 and 
m = l + 2. As the zero-dimensional compact' ho­
mology group of a O-sphere (Le., a pair of distinct 
points) is free Abelian of rank two, it follows from 
(5.1) that H:(~ - Vi-l };;) is a free Abelian group, 
of rank 2",-1 + 1 in the case m = l + 1 and of rank 
2",-1 + m - 2 in the case m = l + 2. In both these 
cases, there exist f3 which satisfy both 

f3 C {I, .,. , m - I} and 1f31 = l. 

For such f3 the O-chain ell may be expressed as the 
difference of two O-simplices. Indeed, suppose 
f3 = {ii, '" , i /}, where the order of the elements is 
such that 

det (.";.,, '" ,"';","';11 - "';lIm) > 0. 

Let e: and e! be (-1) 1-1 times the O-simplices 
defined by the points 

Xo = "';(J, 

and 

Xo = "';fJ, Y = -(.,,;~ - 1)1 I.,,;p - "';fJ ... I- 1 
("';fJ - "';P .. ) , 
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respectively. Then, with the given ordering for the 
elements of f3, we have 

I = e~ - e~. 

Hence, 

where 

A basis for HH~ - V~-l ~j) in the cases m = l + 1 
and m = l + 2 is provided by the ell for 

f3 C II, ... , m - l}, 1131 < 1, 

together with the e~ and e"6 for 13 C {I, ... , m - I}, 
1131 = 1. The dual basis of HH~, Vi"-l ~j) is now 
given by 

for 13 C {I, ... , m - I}, 0 < 1131 < 1, 

-e :s (_I)I/(/+lle"" 

!e = L (-I)'-1'Y1e'Y." !e = ell", - ell, 
..,ell 

(5.18) 

for 13 C {I, ... , m - 1 J, 1f31 = 1 

as one easily verifies with the aid of (4.18), (4.19), 
(4.20), (4.21), and the relations 

KI [e;, e~] = KI [e~, e~ = 1, 

KI rei, ell] = KI [1-, l] = -1, 

KI rep, ell .. ] = I, 

KI [ei, ell .. ] = 0, 

holding for 13 C {I, ... , m - I}, 1f31 = l. On writing 
e.., .. for 'Y C 11, ••• ,m - I}, I'YI < 1 as a linear 
combination of the ell with 13 C {I, ... , m - I}, 
1131 < 1 and the e~ and e"6 with f3 C {l, ... , m - I}, 
1f31 = 1, and evaluating the coefficients as before, 
we find that (5.6) is still valid in the cases m = 1 + 1 
and m = 1 + 2. It follows that the linear relations 
(5.11) also remain valid. So too do the matrix 
representations given by (5.8)-(5.10) and (5.15)­
(5.17), respectively, though they now refer only to 
the subgroup (subspace) of HH~ - Vi"-l ~j) 
[Hi(2: - V;'-l ~j; C)] generated (spanned) by the 
ell, which is mapped onto itself by each of the !/I1l(TIl). 

However, as the homology class of the original 
cycle of integration r = (-1) 'e0 belongs to this 
subgroup (subspace), these matrix representations 
still contain enough information to enable us to 
find the value of J (P) on any Riemann sheet that 
can be reached by a succession of loops all. 

It is interesting to note that, when l is odd, (5.6) 
with 'Y = f2f expresses 2r as a linear combination of 
ell with f3 in B. Hence, the original integral J(P) may 
be written as a linear combination of its discon­
tinuity functions (2.4). Unfortunately, this does not 
work in the physically interesting cases of 1 = 4 
and 1 = 2. 
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Variation of Green's Functions 
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The variation of the Green's function of a linear differential operator is computed as the variation 
of an n-tuple integral with variable boundary. This generalization of Hadamard formula is shown 
to lead naturally to the method of "invariant imbedding" of R. Bellman. Three applications of the 
general formalism are given: the Dirichlet problem, the neutron or photon transport in a plane 
parallel anisotropically scattering slab, and scattering in a central field where three identities used in 
potential scattering are shown to be a consequence of the invariance of the asymptotic Green's 
function. 

I. INTRODUCTION 

IDENTITIES analogous to Green's identities are 
common in mathematical physics mainly through 

the variational principles. Among notable examples, 
we mention an identity used by K. M. Casel in 
neutron-transport theory, and the Kato identity2.3 

(with all its variants) in scattering theory. From 
these identities, it is possible to derive remarkable 
functional relations, generally under the form of 
nonlinear integro-differential equations, some of 
which have already been put to use in radiative 
transfer theory.' 

The purpose of this paper is twofold: we first 
compute a general expression for the variation of 
the Green's function of a linear differential operator 
to obtain a generalization of the Hadamard formula 
of some importance in applied functional analysis. 6

.1& 

We next show how the method of "invariant im­
bedding" of Bellman, Kalaba, and Wing6 (which 
is used recently in radiative transfer theory, neutron 
transport theory,6 electron backscattering theory/ 
and potential scatteringS) is derived as a particular 
case of the Hadamard formula. From invariance 
principles, a set of two functional equations satisfied 
by Green's function is obtained. These equations are 
related to the Ambarzumian-Chandrasekhar invari­
ance principles of radiative transfer theory. For 
further examples of the Hadamard formula, we show 
its relation to Kato identity; we also show how the 
variation of the Green's function can lead to a neat 
and unified treatment of some fundamental identities 

1 K. M. Case, Rev. Mod. Phys. 29, 651 (1957). 
2 T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951). 
8 L. Spruch, in Boulder Lectures in Theoretical Physics 

(John Wiley & Sons, Inc., New York, 1961), Vol. IV. 
4 See, for instance, S. Vena, Progr. Theoret. Phys. (Kyoto) 

24, 734 (1960). 
6 P. Levy, Problwes concrets d'analyse fonctionnelle 

(Gauthier-Villars, Paris, 1951). 
• R. Bellman, R. Kalaba, and M. Wing, J. Math. Phys. 1, 

280 (1960). 
7 R. Dashen, Phys. Rev. 134, A1025 (1964). 
8 R. Dashen, J. Math. Phys. 4, 388 (1963). 

of scattering theory by a central field, like a recent 
generalization of the virial theorem by Robinson 
and Hirschfelder. 9 

II. THE GENERALIZED HADAMARD FORMULA 

Let F be a linear differential operator, U a func­
tion of the N independent variables, Xl, "', x N

, 

satisfying the linear partial differential equation 

FU - Q" = 0, (1) 

where Q" is a given function. We define the adjoint 
operator G through the identity 

VFU - UGV = div J(v, V), (2) 

where the components of vector J are bilinear forms 
of U, V, and their derivatives. We will not delve 
into details of the well-known computation of J.1O 

Let 

£0 = !(VFU - UGV) , 

£ = £0 - VQ" - UQ., 

where Q. is also a given function. 

(3) 

(4) 

If £ is taken as Lagrangian, the Euler-Lagrange 
equations are 

8£/8V = FU - Q .. = 0, 

8£/8U = GV - Q. = o. 
(5) 

(6) 

To this set of equations, we must add boundary 
conditions. (We assume from now on that boundary 
conditions are adjoint of each other.) If we add to 
F a linear integral operator whose kernel is self­
adjoint, we do not modify the expression of J 
(Eq. 2). Let us compute the variation of the N-tuple 
integral with variable boundaryll 

9 P. Robinson and J. Hirschfelder, Phys. Rev. 129, 1391 
(1963). 

10 P. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 1953). 

11 T. De Donder, Theorie invariantive du calcul de8 vari­
ations ( Gauthier-Villars, Paris, 1935). 
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1 = L.e dv, (7) 

Define the dummy variable T as the independent 
variable and 

oU == r(U, V, Xi, T) OT, 

oV == X'(U, V, Xl, T) OT, (8) 
• ; i ox = X (U, V, X I T) OT. 

Then 

01 = I. D.e dv + ,[ (.eX" + D".e) dS 
OT N 'j' 

(9) 
N-l 

with 

and therefore, 

(14) 

We have also 

I. D.e dv = I. a£ dv 
N NOT 

= L ~~o dv - L :T [VQ .. + UQ.] dv 

= .! i V aF U dv +.! r U oG V dv 
2 N aT 2JN aT 

- r V oQ .. dv - 1 U OQ. dv. 
IN aT N aT 

Using the formal properties of the derivative of 
(10) Dirac's function, 

and X", D" the components normal to the surface 
of vectors whose Cartesian components are, respec­
tively, K" and 

Dl.e = ~ aU + ~ov + ~!L(oU) 
- oU. k OT oV. k OT OU.ki dx' aT 

o.e d (av) + OV.ki dx i {i; + 
with U. l = au /ax\ etc. Moreoyer, 

OU/OT == Xu = aU/OT + U.iXi , 

OV/OT == X· = OV/aT + V.iXi. 

(11) 

(12) 

We assume that the Euler-Lagrange equations [(5) 
and (6)1 are satisfied. Then, 

1 = -!(V, Qu) - !(U, Q.). 

The independent sources Qu and Q. are specialized 
to 

N 

Q .. = IT o(x' - x~), 

with 

and 

I 

U == U(rl Ira), 

ro = (x~), 

N 

Q. = IT o(x' - x;) 
I 

v == V(rl I ro), 

r l = (X~) 

are, respectively, the Green's function of the direct 
and adjoint problem. 12 

From the reciprocity theorem, we have 

(13) 

12 Unless explicitly stated, sources are not on the surface. 

1 V oQ. dv + r U aQ. dv 
N aT IN aT 

= L [ VCr I r1) o(l)(r - roCT» ::0 

+ U(r I ro) o(l)(r - rI(T» ~; ] dv 

= ~; ~ U(r l I ro) + ::1 grad1 U(rl I ro). (15) 

Define 

1 l aG 1 aF N :D,£o dv == N U aT V dv + N V aT U dv. (16) 

From (9), (14), (15), and (16) 

oU(rl Ira) = [2: X~ a~ + 2: X~ o~J 
OT ; axo ; aX1 

- [L :D,.eo dv + f (.er + D".e) dS ] I (16a) 
N-l 

which is the first form of our result. The variation 
of the Green's function is the sum of two terms: the 
first bracket of (16a) is the variation of the Green's 
function when points rl, ro are displaced, and the 
second bracket illustrates the fact that U(r l I ro) is 
a functional and therefore reflects any displacement 
of the boundary or change of the substratum. Intro­
ducing (11) into (16a), we obtain a second (and 
sometimes more useful) form: 

oU(r l I ro) = [2: (x~ a~ + X~ a~) _ ,[ a" dS] 
OT ; axo aXl j 

N-l 

- [L :D,£o dv + f R" dS J. (16b) 
N-l 
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<t' == :E ~;XI + :E S;IX~I' 
i i.l 

,(. O£U O£V ~I == £01 - -- . - -- . oU., ., oV., ., 

- ~ U. II - ~ V. II ... ), 
oU. iI oV. iI 

(17) 

S~I == -~U.-
r ou.iI.r 

<R'5~X"+~X' 
oU. 1 oV., 

+~X".+~X·.+ oU.;; .r oV.,; .r 
(18) 

We have written derivatives up to the second 
order only. Either form (16a) or form (16b) can be 
used. For instance, in neutron transport theory, 
boundary conditions impose R" = 0, and form (16b) 
is more appropriate. On the other hand, when T is 
not explicit, !D.£ = 0 and D"£ = 0, and form (16a) 
is more appropriate. 

We must ask under what conditions oU(rl I ro)/oT 
equals to zero. For instance, let us assume that 
boundary conditions have an intrinsic character. 
That is, the boundary conditions, and therefore also 
the Green's function, are invariant for Euclidian 
displacements, i.e., for translations and rotations. 
Let X~ = X~ = n', where n' is the cosine director 
of unit vector o. Translation invariance yields 

Q gradl U(rl I ro) + 0 grado U(rl I ro) 

- f 4: :J;ni dS = O. 
• r 

(19) 

Thil5 equation is verified for any 0 and therefore 

gradl U(rl I ro) + grado U(r i I ro) 

- f ~"dS = 0, (20) 

where ::r is the vector whose components are ~i. 
Similarly, rotational invariance yields 

rl X gradl U(r l I ro) + ro X grado U(rl I ro) 

- f (r )( 3") dS = O. (21) 

m. AN IDENTITY 

We now show the close connection between an 
identity (used time and again in various forms) and 
the variational formulas (16a) and (16b). Let us 
consider a one parameter (T) family of problems. A 

subscript will label the problem in the family. Let 
U~ and V .. be, respectively, solutions of 

F(JU(J - Q~ = 0, GaVa - Q: = 0, (22) 

where a, {3 are given values of the parameter and 
Q~, Q: given functions not necessarily equal to 
Dirac's functions. U" and V a satisfy adjoint bound­
ary conditions on the surface. Both the boundary 
conditions and the surface are assumed to be in­
dependent of the parameter. We have the identity 

Ka(J == (Va, F(JU(J) - (Va, Qp) 

- (UIl , G .. Va) + (UfJ , Q;) == O. 

We define 

oUa == Up - Ua, oVa == V p - Va, 

oG .. == G(J - G ... 

Let (3 -7 a, and, keeping only first-order terms, 

KafJ = t(V .. , oFa Ua) + HUa, oG .. Va) 

- (Va, Qp) + (U(J, Q-P) 

(23) 

+ ~ L div w(U a, oVa) + ,9(Va , oU a)] dv = O. 

(24) 

The surface integral vanishes and we have the firs~ 
order relation 

(Va, Q;;) - (U(J, Q;) 

= !(Ua, oGa Va) + t(Va, oFa U,,). (25) 

Let Q;; = oCr - rg), Q; = oCr - r~), r~ "F r~. If we 
let a = (3, we have the reciprocity theorem 

Va(ro I r l ) = U .. (rl I ro), (26) 

where Va(r I rI) and UfJ(r I ro) are solutions of (22). 
Introducing (26) in (25), we have 

leVa, oFa U"') + !CU"', oGa Va) = - OU.(rl I ro) 

(27) 

or 

oU(ri I ro) = _ r :0.£0 dv 
OT I N 

in the notation of Sec II as a special case of (16a). 
Identity (23) with a = {3 has been used by Casel to 
derive various forms of the reciprocity principle. 
When a ~ {3, identity (23) has close connections 
with the Kato identity, 2.3 and F == H - E with H 
the Hamiltonian and E the energy. However, as we 
shall see in Sec. IV C, surface and sources are re­
moved to infinity. 
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IV. APPLICATIONS 

A. The Dirichlet Problem 

We have 

.eo = HUa V + VaU). (28) 

There is no explicit dependence on T and :O,.eo == O. 
The homogeneous Dirichlet boundary condition is 
U(r I ro) = 0 and VCr I rl) == 0 for r on the surface. 
Therefore, XU == XV = X7. = X7 .. = 0 and R" = O. 
If self-adjointness is taken into account, and if rl 
and ro are not on the boundary, Eq. (16b) yields 

aU(rl I ro) = arl grad U(r I r ) 
OT OT 1 1 0 

+ !~ grado U(rl I ro) 

_ 1. On (JU(r1 I r) (JU(r I ro) dS (29) 
'f OT an an ' 

where On = rOT is the normal displacement. 
Usually, the Green's function is defined as the solu­
tion of aU(r I ro) = 411"0(r - ro). If ro and rl are 
fixed, we obtain the classical Hadamard formula6 

OU(rl I ro) = -~ 1. (JUCrt I r) (JUCr I ro) On dS. 
411" 'f an an 

(30) 

B. Neutron and Photon Transport 

The method of" invariant imbedding" of Bellman, 
Kalaba, and Wing6 is, in fact, contained in formula 
(16b). The problem, set up initially by Bellman, was 
to search for functional relations between particular 
Green's functions: the reflexion and transmission 
function of slab-like media. The problem was later 
generalized to stratifiable inhomogeneous media with 
isotropic scattering. However, we can further gen­
eralize the results of Bellman et al. to arbitrary 
Green's functions (although the problem is simpler), 
to arbitrary media (i.e., not necessarily monotone 
under inclusion), and to anisotropic scattering. The 
variational method used here has the advantage 
over the "invariant imbedding" methods in that no 
"particle counting" is necessary. It should be remem­
bered that" invariant imbedding" was motivated by 
the conversion of two-point boundary-value prob­
lems into initial-value problems. Although equations 
are nonlinear, the switch from Fredholm-like equa­
tions to Volterra-like equations has many computa­
tional advantages. 

Since this application is intended to illustrate the 
flexibility of the variational expression for the 
Green's function, we shall restrict our illustration 

to the time-independent case of the plane-parallel, 
anisotropically scattering, atmosphere of finite op­
tical thickness a. 

Let <I> (x, 14) be the intensity of radiation in the 
direction +14 (0 < p. = cos 9 S 1), where 9 is the 
angle in the direction of the entering normal (Le., 
along the positive axis). Let x = 0 be the left 
boundary and x = a be the right boundary. The 
Boltzmann equation takes the form 

14 #~ 14) + <I>(x, 14) 

= c(x) {1 <I>(x, p')f(P' -414) dp' + S(x,p), (31) 

where c(x) is the mean number of secondaries scat­
tered for one primary particle (either photon or 
neutron), Sex, 14) the source intensity, and f(p.' -414) 
the probability that a particle moving in direction 14' 
is thrown into the direction p. after scattering. We 
have the normalization 

{l f(p' -4 14) dp' = i: !(p' -4 14) dp = 1. 

Moreover, time-reflection symmetry gives 

1(14' -414) = f( -14 -4 -14') 

and spatial-reflection symmetry gives f(l -414) = 
f(p -4 14'). There are no internal sources, but since 
the slab is irradiated by a plane-parallel source, 
we have the following boundary conditions: 

<1>(0, 14) = 0, 14 > 0 (32) 

<I>(a,p) = o(p - Po), 14, Po < O. 

In order to apply Eq. (16b), we must convert 
these boundary conditions into surface sources, 
otherwise no Green's function can be defined. Let 
us take Sex, 14) = Qo(x - a)o(p - Po). Integrating 
(31) from a - E to a + E, 

p[<I>(a + E, 14) - <I>(a - E, 14)] = Q 0(14 - Po). (33) 

Since <I>(a + e) = 0 and 

lim <I> (a - E, 14) = 0(14 - Po), Q = -Po = + 11'01. .-0 
(34) 

The adjoint flux is <I>*(x, 14), the solution of 

-I' d<l>*J:' 14) + <I>*(x, 14) 

= c(x) i: <I>*(x, p')f(p -4 14') dp' + S*(x, 14). (35) 

Intensity <I>(x, 14) can be rewritten as the Green's 
function G(x, 14 I a, Po). We choose S*(x, 14) = 
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-1L1~(1L - ILl) with ILl < 0 and with ¢*(x, IL) == 
G*(x, IL I aI, + ILl). It is easy to check 

G*(x, P I a, PI) = G(x, -P I a, -PI) (36a) 

and 

Ipi G(x, P I a, PI) = IPll G(a, -PI I x, -p) (36b) 

(the reciprocity principle). 

The volume V in the space x X P is topologically 
equivalent to the lateral surface of a right cylinder 
of length a. The boundary is the sum of the two 
edges of the finite cylinder, and reduces to the 
boundary of the x subspace. 

From the definition of I: 

I = ~ 1 G(x, P I a, JI.o) ~(x - >') ~(p - PI) dx dp 

+ ¥ 1 G*(x,p I a,Pl) ~(x - >.) ~(p. - Po)dxdp 

= ~ G(a, ILl I a, Po) + ¥ G*(a, Po I a, PI) 

= ¥ G(a, PI I a, Po) + t Ipol G(a, -Po I a, -PI) 

= IPll G(a, PI I a, Po). (37) 

We separate the scattered from the unscattered 
flux and write 

G(a, P I a, Po) = o(p - Po) + S(p, Po)/lpl, (38) 

where S(IL, 1L0) = 0 for P < O. The number of re-

~S(ILI' Po) = 11 dp [~(p. _ JI.o) + S(p, ILO)J 
~r -1 Ipi 

fleeted particles in direction IL > 0 for a collimated 
plane source 11L01 ~(x - a)~(1L - 1L0) is S(IL, Po). The 
following relations are the immediate consequences 
of (38) and (36) 

S(p., Po) = S( -Po, -p), 

S*(p, Po) = S( - p, - Po). (39) 

We imbed the problem in a family of problems 
with variable thickness a and therefore a == r, the 
variational parameter. The boundary conditions are 
unchanged13 and R" = O. Moreover, X" = dx/dr 
on the surface 1 at x = >. and X" = 0 on surface 2 
at x = O. Using Eqs. (17) and (31), the surface 

integral 11 an dS reads 

,£ (i" dS = 11 G(a, P I a, Po) dp 
j 1 -1 

X {I [~(p - pI) - c(a)f(p.' ~ p)] 

X G(a, _p' I a, -PI) dp'. (40) 

In order to avoid the complication of surface 
sources in (16b), we remove them infinitesimally at 
thickness a-E. To order E, we have 

(41) 

Since ILl < 0 and :0.£0 = 0, c(x) being an explicit 
function of position but not of thickness a. 

Introducing (38) into (40) and (41), 

X {I [~(p. - pI) - c(a)f(p' ~ p)][ O(p' - PI) + S( -i~;I-PI)] dp' 

= ~(po - PI) + S( - i;~ 1-PI) + S(i~: t) - c(a)f(p.1 ~ Po) 

- c(a) {I S( - p', - p1)f(p' ~ Po) f::, - c(a) i: S(i~ I Po) f(p.1 ~ p) dp 

_ c(a) 11 11 SCi' jO) f(p' ~ IL) S( - j'; 1-PI) dp dp' + 11 S(IL, PO)S(2- p, -ILl) dlL. (42) 
-1 -1 IL IL -1 P 

From (39), since 1L01L1 < 0, ~(1L1 - 1L0) = 0, and S(IL, 1L0)S( -IL, -ILl) = 0, we have 

~S(~~ 1L0) = S(p.1, 1L0)C~11 + I~ol) - c(a>[f(lLo ~ ILl) + {I f(lLl ~ p) S(i~t) dlL 

+ 11 f(po ~ p) S(1L1' p) dp + 11 11 S(p, Po) f(1L ~ pI) S(P1 -; pI) dp dp/ ]. (43) 
-1 IILI -1 -1 IILI IlL I 

13 When the surface sources are arbitrary or when the surface has curvature, the problem is more complicated and 
lies outside the scope of this paper. 
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Since S(P.l, p.o) is also an explicit function of a and 
1'1, 1'0 are independent of a13 {)S/{)a = as/aa Eq. 
(43) is the final result, a generalization to aniso­
tropic scattering of a result derived by Deno," 
Bellman and Kalaba 6 by different methods. An 
alternate derivation is the invariance equation (20), 
since the Green's function is invariant for a displace­
ment of the origin. We have 

.2-. = iJxo ~ + aXl ~ + iJa .2-. , 
aT aT axo aT aXl aT iJa 

while S is not an explicit function of Xo and Xl' 
Therefore, {)S(P.l, P.o)/{)T = 0 gives 

(iJjaxo + iJjaX1)S(p.1, 1'0) = -(a/aa)S(p.l, 1'0) 

and the invariance equation reads 

(a/aa)S(p.l, 1'0) + 1 n3" dS = 0 (44) 

with the normal pointing along x. Equation (44) is 
identical with (41). 

C. Scattering by a Central Field 

The variation of the Green's function can provide 
a neat and unified treatment of some fundamental 
identities of scattering theory.3 

We define the reduced Hamiltonian 

H == (2m/h2)H, 

and 

VCr) == (2m/h!) V(r) , 

H = -A+V. 

Operator F is 

(45) 

(46) 

The Green's function will be defined for a point 
source removed to infinity in the direction of - k, 

lim U(rl I ro) = exp tKjfl 

+ F(e) [(exp '£K,fl)/r1] == If.. (47) 

With Ik.1 Ik,1 = k and 11' - e the angle between 
ko and kl, we have 

lim U(r1 -+ k~ I ro -+ - kja) ....... 
(48) 

rt~CO 

At large distance, the uncollided flux dominates, 
:and we can state that U .. (rl I fo) is invariant for 
any transformation which leaves k,rl and kjfo in­
variant. Since k and rl, fo occur only in the products 
k.fo and k,rl, we can assume U .. (fl I ro) to be a 
member of a two-parameter family of functions: 

U .. (rl I ro) == G(Xrl, Xro I kiA, pp.) h"-II-l, (49) 

where A and p. are independent variables, and p is 
any parameter of H, except the parameter of k. 
Therefore, 

and 
{)U .. (fl Iro)/{)Alx-II-I = 0 

{)U .. (fl I ro)/ {)P.IX-"-l = O. 
(50) 

The last equation is a consequence of the fact that 
U .. (rt!ro) is independent of any other parameter 
except k. Using identity (16a) and 

()U .. (r1 ! ro) - l' J '" n d 
~ - - un ""',"-'0 V 
uT cr-+Clfl 

(51) 

(since Xk = X: = X = 0), therefore, 

:~ J :OA£O dvlx_,,_1 = -:~ 1 D"£ dSlx_"_l' (52) 

:~ J :0,,£0 dvlx_lI_l = -:~ 1 D"£ dS IA_II_, • (53) 

We prove that identity (52) is a generalization 
of the virial theorem given by Robinson and Hirsch­
felder9 and that identity (53) leads, by specializa­
tion, to the various identities derivable from Kato 
identity.3.2 From (11), we have 

:~ 1 D"£ dSlx_II_1 

- lim J [~aU + ~.E.. (au)] dS 
- ....... 'j {)U .• aT ou .•. ar aT A-II-,-l 

+ lim J [~av + ~.E.. (av)] dS 
a ..... 'j ()V .• aT aV ... ar aT A-II-.-1 ' 

(54) 

where V is the Green's function of the adjoint prob­
lem defined as a planewave incident in direction 
- k, and scattering into - k j. The derivatives 
should be evaluated in the following ways: 

(a) a/aA F(Ar, k/A) IX-1 

= (r alar - k a/ak)F(r, k), 

where F is any function of rand k; 

(b) a/aA A(Ar)!x_l = -2A(r), 

(55) 

(56) 

with A(r) the Laplacian in spherical coordinates. 

(1) We give now an example of Eq. (52). We have 

£0 = ! V[ - A + VCr) - k2
] U 

+ jU[ -A + VCr) - k2]V (57) 
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and 

J o£ol dv = ! J V[2V(r} + r aV(r)]V dv 
oX A-I 2 ar 

+ ~ J U[ 2V(r) + r a!;r)]v dv. 

On the other hand, 

lim J D-£oIA-l dS ...... 
r ,[ 1 [0£ au + o£ a (au)] dS 

= .. ~ 'f 2 ou .• a; ou .•• ar aT 

(58) 

+ lim ,[ ! [0£ aV + ~ 2... (av)] dS. (59) 
II ...... 'f 2 ov .• aT oV .•• ar aT 

Using the reciprocity principle, VCr I rl) = U(rl I r) 
and self-adjointness, Eq. (59) reads 

rL~a J U(rl I r{ 2V(r) + r az) ]U(r I ro) dv 
r.-t-k,u ....... 

= ,[ ['f' a
2

1/1, _ al/l, al/l,] dS, (60) 'f 'Y' ar aT ar aT 

a result identical to the generalization of the 
Robinson-Hirschfelder theorem (Eqs. 31 and 38 of 
Ref. 9). Introducing (47) into (60), we obtain 

rL~a J U(rl I r)[ 2V(r) + r a~) ]U(r I ro) dv 
r. __ k,a 

II ...... 

d = 271" dk [kF(7I" - 'Y)], (61) 

where 'Y is the angle between k. and k,. 
(2) We now give two examples of identity (53). 
Using a partial wave expansion 

... 
U(r, ro) = E A"PI(cos e)rfJl(r)/r, (62) 

o 

where the rfJl(r) are real solutions, zero at the origin, 
of 

and 

lim ,[ D"£o dS == lim (rfJj a
2
rfJl - OrfJIOrfJI)!a (66) 

II ..... 'f B...... ar al ar a1 • 
with R the radius of a large sphere. 

We can use the asymptotic expansion 

rfJ,,(r) = sin [kr - ! 171" + 7}(k, l)]/k (67) 

and ji' D"£o dS = - (011/a1 - 7I"/2)/k, provided 
that VCr) does not have a singularity worse than 
r-' (t < 2). Therefore 

(21 + 1) 1'" rfJ:(r)/r2 dr = [~ - a'1 (k, f)/IJl}k (68) 

is another Robinson-Hirschfelder equality. As a 
second example, we assume p == R, where R is the 
radius of a cut-off potential VCr, R). 

Let VCr, R) = Vo(r)[l-H(r-R)], where H(x) = 1 
for x> 0 and H(x) = 0 for x :::;; O. Therefore, 

J o~£ol dv = -2m 1" rfJ:(r)Vo(r) oCr - R) dr 
up ,.-1 0 

= -2mrp~(R)Vo(R). (69) 

However, the exact wave function outside R is 
known as 

and 

J 0;01 dv = -2mVo(R)R 
up ,.-1 

X [il (kR) - tan fj·n,(kR)t. (71) 

Since 

1 D"£odS 

_ (-I. a
2
rfJI _ arfJ, arfJl)/B _! a tan TIl 

- '1'1 ar aR ar aR 0 - k aR ' (72) 

we have 

d2rfJddr2 + [k2 
- 2m VCr) - l(l + 1)/r2]rfJ, = O. 

(63) a tan TldaR = -2m Vo(R)R 

Therefore, 

£0 = rfJl(r){d2/dr'" 

+ [k2 
- 2m VCr) - 1(1 + 1)/r1 } rfJl (r) . (64) 

The volume of integration is the line 0 ~ r ~ CD. 

Ult us take first p = 1, 
then 

J o£o/ dv = -(21 + 1) 1'" rfJ~~r) dr (65) 
~ ~l 0 r 

X [i,(kR) - tan '1'nl(kR)f, (73) 

an often-derived Ricatti-type nonlinear differential 
equation.3

•
14

•
15 
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The Existence of Closed Magnetic Surfaces* 
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A toroidal vacuum magnetic field, which has closed magnetic surfaces in the neighborhood of the 
magnetic axis, is mathematically constructed. The existence of these surfaces is demonstrated by the 
theorem of Moser on the stability of mappings which are perturbations of rotations whose rotation 
angle is a function of the radius (twist mapping). 

INTRODUCTION 

THE magnetic field studied in this paper is a 
mathematical expression constructed to satisfy 

Maxwell's equations. It is not constructed from a 
current distribution. However, it may be imagined 
that the fields exist inside current coils wound on a 
torus (Stellarator). The windings are such that there 
is a field line which closes on itself (magnetic axis). 
In the example of this paper, the components of 
the magnetic field perpendicular to the magnetic 
axis vanish quadratically in the neighborhood of 
the magnetic axis (l = 3). 

The existence of the magnetic surfaces is proved 
by the stability of a mapping of a plane into itself 
with a fixed point. This mapping may be described 
in the following way: Let a plane intersect the mag­
netic axis in a point P. Let pI be a point in the plane 
in the neighborhood of P. The image of pI is found by 
following a field line through pI until it returns to 
the plane in a neighborhood of P. Since P is on the 
magnetic axis and since the magnetic axis closes on 
itself, then P is its own image. If the mapping has 
invariant closed curves, then the field has closed 
magnetic surfaces generated by the closed curves 
moving along field lines. 

If r, (J are the polar coordinates of a point in the 
plane, and r', 0' the image coordinates where r = 0 
is the fixed point, then for the example, the mapping 
will be shown to be of the form 

r' = r + r1(r, e), 

(JI = (J + fJr2 + (J1(r, e), 

(1) 

(2) 

where the leading terIllS in r1 are of the order r\ the 
leading terIns in (}1 are of order r3, and fJ ¢ 0 is a 
constant. The mapping of Eqs. (1) and (2) is thus 
a perturbed twist mapping. The mapping will not 
possess closed invariant curves unless certain con­
ditions are imposed upon rl and (}1. The work of 

* Work supported by Research and Technology Division, 
U. S. Air Force Systems Command. 

Moser1
•
2 will be used to show that there is a neigh­

borhood of the fixed point in which these conditions 
are satisfied. 

Only an existence theorem is demonstrated so that 
the results may be of only theoretical interest. Thus, 
it will be shown that there is a magnetic field with 
a magnetic axis such that there exists a neighbor­
hood of the magnetic axis which contains a magnetic 
surface. It does not follow that every point inside 
the magnetic surface will lie on a magnetic surface. 
However, as a neighborhood shrinks to the magnetic 
axis, the measure of the points in the neighborhood 
lying on magnetic surfaces approaches the total 
measure of the neighborhood. 

I. UNITS AND COORDINATES 

The symbols X, Y, Z denote the coordinates of 
a right-handed Cartesian system. In the X, Y plane 
there is a circle with its center at Y = 0, X = R > o. 
The radius of the circle is less than R. A torus is 
generated by rotating this circle about the Y axis. 
The center of the circle generates a circle of radius 
R in the X, Z plane. A magnetic field is created 
inside the torus in such a way that the circle of 
radius R is a field line. This field line is the one 
chosen for the magnetic axis. 

The symbols x and y are Cartesian coordinates of 
a plane containing the Y axis. The point x = y = 0 
is the point of intersection of the magnetic axis with 
this plane. The x axis is in the X, Z plane while the 
y axis is parallel to the Y axis. The coordinate tp is 
the angular coordinate of the magnetic axis. It is 
chosen so that X = R at tp = x = O. As tp increases, 
a point on the magnetic axis makes a right-handed 
screw about the Y axis. The variables, x, y, tp are 
the coordinates to be used in the calculation. Their 
range is - R ~ x < (x), - co < y < (Xl, 0 ~ tp < 211'. 

• 1 J. Moser, Nachr. Akad. Wise. Gottingen, II. Math.-phy­
sik. Kl. (1962). 

I J. Moser, Proceeding8 of the Symposium on Nonlinear 
Problems (University of Wisconsin, Madison, Wisconsin 
April 1962). • 
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The relationship between the X, Y, Z and x, y, ffJ 
systems is given by 

The primes in Eqs. (12) and (13) denote differentia­
tion with respect to the arguments of I" or K .. and 
not with respect to x. 

X = (R + x) cos tp, 

Y== y, 

Z == - (R + x) sin tp. 

Since N" .. o and N"al are linear combinations of 
(4) solutions to Eq. (11), they are themselves solutions 

to Eq. (11). From Eqs. (12) and (13), it is seen that 

(3) 

(5) 

Note that x, y, ffJ are essentially cylindrical coordi­
nates with R + x the radial and y the axial variable. 

The magnetic field is represented by the vector B. 
Since B is a static vacuum field, it may be represented 
as the gradient of a scalar'\]"( so that 

B == \l'\]"(. 

For a simple toroidal field in the positive tp direc­
tion, '\]"( == BaRtp where Bo is the magnitude of B at 
the radius R. No generality is lost if it is assumed 
that Bo = 1 and R = 1. 

A field whose scalar potential is J/I is superimposed 
on the simple toroidal field. Since x = y = 0 on the 
magnetic axis, then for this value of x and y, \7J/1 = O. 
The potential '\]"( of the total field may be written 

'\]"( = tp + J/I. 

The equation satisfied by J/I is \72J/1 = 0, which in 
these coordinates may be written 

iiJ/l/iJx2 + (1 + X)-I iJJ/I/iJx + iJ2 J/1/iJy2 

N .... o(O) = N~"I(O) == 1, (14) 

N~ .. o(O) == N .... 1(0) == O. (15) 

From Eqs. (11), (14), and (15), the Taylor expan­
sions of Nnao and N n ",! to the third order are 

N .. .,l(X) = x - x2/2 

+ (2 + n2 + (2)x3/6 ... . (17) 

From Eqs. (16) and (17), an l == 3 field will be con­
structed. Choosing al and a2 such that al > a2 > 0, 
then to the third order 

cos alyN,,",l(X) - cos azyN"aol(X) 

= U(a~ - a~)xa] - U(a~ - a~xy2]. (18) 

Similarly, if aa and a, are chosen such that aa>a4>0, 
then to third order 

+ (1 + X)-2 iJ2J/1jal = O. (8) a;l sin a3yNnaao(x) - a~l sin a4yN" ... 0(x) 

The equations for the field lines are given by 

dx/d<; = [(1 + x)2(iJJ/I/iJx)](1 + iJJ/I/iJffJf1
, (9) 

dy/dffJ = [(1 + x)2(iJJ/I/iJY)](1 + iJJ/ljaffJrl • (10) 

II. CONSTRUCTION OF THE MAPPING 

IfinEq. (8)J/lisreplacedby N"a(x)e'(au+n,,) and the 
equation multiplied through by (1 + x)Ze-;(,,·+n,,>, 
the result is 

(1 + x)2d2N""/d,,,' + (1 + x) dNna/d" 

- [aZ(1 + X)2 + nZ]N"a = O. (11) 

If l" and K" are modified Bessel functions of the 
first- and second-kind, respectively, then l,,[a(1 + x») 
and K,.[a(1 + x») are solutions of Eq. (11). The 
functions Nnao(x) and Nnal(x) will be defined by 

N () _ K~(a)l .. [a(1 + x)] - l~(a)K,,[a(1 + x)] 
",,0 X - K~(a)ln(a) - l~(a)K .. (a) , 

(12) 

N () _ K,,(a)I,,[a(1 + x)] - I,,(a)K,.[a(1 + x») 
.. "I x - a[K,,(a)I~(a) - In(a)K~(a)] 

(13) 

(19) 

If the left-hand sides of Eqs. (18) and (19) are 
denoted by UnCal' a2, x, y) and V,,(aa, a" x, y), 
respectively, then the potentialJ/l to be used in con­
structing the mapping is given by 

J/I = sin q;UO(al l az, x, y) 

(20) 

From Eqs. (18), (19), and (20), it is seen that to 
the fourth order the function J/I has the form 

J/I = Ax3 - 3Dx2y - 3Axy2 + Dy3 + Ex~ 
+ Fx3y + GX2y2 + Hxy3 + Jy4 + (21) 

where 

A = H(al - ai) sin tp], (22) 

D = H(a! - a!) cos q;], (23) 

and the functions E, F, G, H, and J are linear 
combinations of Rin !p and cos !p. 

From Eqs. (9), (10), and (21), the field-line equa­
tions to the third order are given by 



                                                                                                                                    

THE EXISTENCE OF CLOSED MAGNETIC SURFACES 1773 

dx/tLp = 3Ax2 
- 6Dxy - 3Ay2 

+ (4E + 6A)xS + (3F - 12D)x2y 

+ (2G - 6A)xy2 + HyB, 

dy/dl{) = 3Dx2 
- 6Axy + 3Dy2 

+ (F - 6D)x3 + (2G - 12A)x2 y 

(24) 

+ (3H + 6D)xy2 + K y3 + ... . (25) 

The symbols Xo and Yo denote respectively x(O) 
and yeO). If x(l{» and Y(I{» are expanded as power 
Beries in Xo and Yo, then to the third order this may 
be written 

r1 Cr, 0) are of order r· and those of 01 (r, fJ) are of 
the order ra. 

m. STABILITY OF THE MAPPING 

Equations (1) and (2) in themselves do not prove 
that the mapping has closed invariant curves; thus, 
if rl (r, fJ) = lr', then the mapping is unstable no 
matter how small E is. The stability of the mapping 
is demonstrated by the following theorem proved 
by Moser3

: 

Given a mapping 

p' = P + X2
p2(P. fJ), (33) 

(34) X(I{» = Xo + X20X~ + XllXOY~ + X02Y~ + X30X~ 
+ Y21X~YO + Y12XOY~ + Y03Y~' 

Y(I{» = Yo + Y20X~ + YuXoYo + Y02Y~ + Y30X~ 
(26) where 1 ~ p ~ 2, 0 < X ~ 1. The functions P2 and fJ2 

are periodic with period 211" in fJ. If the mapping 
satisfies the conditions that 

+ Y21X~YO + Y12XoY~ + Yoayg, (27) 

where X20, Xu, Y20, ... are functions of I{). These 
functions vanish at I{) = O. 

If Eqs. (26) and (27) are substituted into Eqs. (24) 
and (25), the equations for the variables X20, Xll, •• , 

may be found by equating coefficients of powers of 
Xo and Yo. It may be shown (see Appendix I) that 
to the third order all coefficients vanish at I{) = 211", 
except 

-X21(211") = -xoa(211") = Yao(27r) = Y12(2'1I) 

= 36 i 2r 

A(I{» dl{) i" d(I{)') dl{)'. (28) 

From Eqs. (22) and (23) 

36 {" A(I{» dl{) 1" D(I{)') dl{)' 

= 1I"(a~ - a:)(a~ - a!). (29) 

If the right-hand side of Eq. (29) is denoted by fJ. 
then to the third order 

x(211") = Xo - fJyo(x~ + y~) + ... , (30) 

y(211") = Yo + fJxo(x~ + y~) + ... . (31) 

If Eq. (31) is multiplied by iW = 1) and added to 
Eq. (30), the result is 

x(27r) + iY(211") 

= (xo + iyo) exp ifJ(l + y2) + !(xo. Yo), (32) 

where the leading terms in f(xo. Yo) are of fourth 
Qrder Xo and Yo. 

By making the substitution xo + iYa = r exp iO, 
x(211") + iy(211") = r' exp iO', Eq. (32) is put in the 
form of Eqs. (1) and (2) where the leading terms in 

(1) Every closed curve enclosing the fixed point 
(p = 0) intersects its image, and 

(2) There exists a constant Q ~ 1 such that 

Q-l ~ d~/dp ~ Q, (35) 

/d""~/d "', I + I a""+"" P2 I + I a ... ·+
m

• fJ2 ! < Q 
Pap"" c3fJ""( c3p"" ofJm

• ' 

(ml ~ 333), (m2 + ma ~ 333), (m, + ms ~ 333) (36) 

then there exists a 0, independent of the constant X, 
such that if 

(37) 

the mapping of Eqs. (33) and (34) has closed in­
variant curves in the annulus 1 ~ p ~ 2. 

To apply the theorem to the mapping of Eqs. (1) 
and (2), first let C be a closed curve about the fixed 
point and let C' be its image. Since C and C' both 
enclose the fixed point, the only way they cannot 
intersect is for C' to be inside the region bounded 
by C, or vice versa. Since the mappings of Eqs. (1) 
and (2) are generated by following field lines, it 
must be flux preserving. Thus, within the region 
bounded by C, there must be the same flux as that 
with the region bounded by C'. This is not possible 
if one of the curves is contained in the region bounded 
by the other. Consequently, the two curves must 
intersect. This demonstration has assumed that the 
component of the magnetic field perpendicular to 
the x, y plane does not change sign within C or C'. 
This will be true if C is in a sufficiently small neigh­
borhood of the origin. 

S The theorem presented here is a special case of theorem 
(3) in Ref. L 
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It may be shown2 that there is a neighborhood of 
the fixed point where the mapping meets the other 
requirements of the small twist theorem by sub­
stituting}.p = r, }.p' = r'. This changes the mapping 
of Eqs. (1) and (2) into the form of Eqs. (33) and 
(34), where for )... ~ r ~ 2)"" 1 ~ p ~ 2, Hp) = {3p2, 
and 

pip, (J) = )...-ar1 ()...p, (J), 

(J2(P, (J) = )...-2 (Jl(P, (J). 

(38) 

(39) 

Because the leading terms in Tl(r, (J) are of r' and 
those in (Jl (r, (J) are of ra, then 

lim P2(P, (J) = lim Mp, (J) = O. (40) 
)' ... 0 >.--0 

Because of Eq. (40) and no matter how small 0 is, 
there is some value of )... for which Eq. (37) will be 
satisfied since 0 is independent of ).... Equation (36) 
states that the derivatives of P2 and (J2 must be 
bounded up to order 333. That this is true follows 
from the fact that the Bessel functions are entire 
functions. Equation (35) will be satisfied provided 
that {3 does not equal zero. From Eq. (29), it is 
possible to choose the constants ai, a2, aa, a4, SO 

that (3 does not vanish. 
The conclusion is that the magnetic field whose 

potential is rp + Yt, where Yt is given by Eq. (20), has 
closed magnetic surfaces in some neighborhood of 
the magnetic axis. 

Ai; stated earlier in the paper, this result is only 
an existence theorem. Thus, no attempt will be 
made to estimate the constant O. The result applies 
only to geometries similar to a Stellarator. 
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APPENDIX 

The equations for X20, Xu ••• may be found by 
substituting Eqs. (26) and (27) into Eqs. (24) and 
(25) and equating coefficients of equal power of 
Xo and Yo. The solutions of these equations involving 
only coefficients of the power of Xo and Yo up to 
these orders may be written 

x20(rp) = 3 L' A(ep') dep', 

XJl(ep) = -619 

D(ep') dep') 

X02(ep) = -319 

A(ep') dep') 

Y20(ep) = -319 

D(ep') dep', 

Yl1(ep) = -6 LP 

A(ep') dep', 

Y02(ep) = 319 

D(ep') dep', 

Xao(ep) = 419 

E(ep') dep' + 61" A(ep') dtp' 

+ 18 1" A(ep') dep' LP

' A(ep"} dtp" 

+ 18 1" D(ep') dep' 1'" D(ep"} dqJ", 

X21(ep) = 31" F(ep') dep' - 12 i" D(ep') dep' 

- 18 1" A(ep') dep' 1'" D(ep") dep" 

+ 18 1" D(ep') dep' i'" A(ep") dtp", 

XlI(ep) = 21" G(ep') dep' - 6 L' A(ep') dqJ' 

+ 18 1" A(ep') dep' 1'" A(ep") lip" 

+ 1819 D(ep') dep' i 9

' D(ep") dtp", 

Xoa(ep) = 19 

H(ep') dep' 

+ 18 10
9 

D(ep') dcp' f" A(ep") dqJ" 

- 18 1" A(ep') dep' 1'" D(ep") dqJ", 

Yao(ep) = 10" F(ep') dep' - 61" D(ep') dqJ' 

- 18 L" D(ep') dep' 1'" A(ep") dep" 

+ 18 f' A(ep') dep' L" D(ep") dqJ". 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(A10) 

(All) 
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VS1(1P) "'" 2 f' G(l/i) dtp' - 121" A(IP') dtp' 
From Eq. (20), it follows that if 'Y(IP) is a.ny of 

the functions A, D, E, F, G, H, J, then 

+ 18 i" D(IP') dtp' 1'" D(IP") dtp" i
h 

o 'Y(IP) dtp = O. (A15) 

+ 18 1" A(IP') dtp' 1'" A(IP") dIP", (A12) 
From Eqs. (22) and (23) it follows that 

{" A(IP) dtp 1" A(IP') dIP' 

Y12(IP) ... 3 iff G(IP') dtp' + 6 ilP D(IP') dIP' 

i
h 

i" = 0 D(ep) dtp 0 D(IP') dtp'. (A16) 

- 18 1" D(ep') dp' 1'" A(IP") dep" From Eq. (A15) and by integration by parts 

+ 18 1" A(IP') dtp' i'" D(ep") dtp", (Ala) {" A(ep) dtp lIP D(IP') dtp' 

lIoa(IP) - 41" J(IP') dtp' i
h 

i" = - 0 D(ep) dep 0 A(IP') dtp'. (Al7) 

+ 18 1" A(IP') dtp' 1'" A(IP") dtp" 
From Eqs. (A15) and (A16), the right-hand sides 

of Eqs. (AI) through (A16) all vanish at IP = 2r 
with the exception of (AS), (AlO) , (All), and (AI3). 

+ 18 1" D(IP') dtp' {" D(IP") dep". (A14) 
These four equations, together with Eqs. (AI5) and 
(AI7), may be used to derive Eq. (28). 
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On the Dimer Solution of Planar Ising Models 
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Wheatstone PhysiC8 Laboratory, King's College, London, England 
(Received 17 March 1966) 

Derivations of the partition function of the Ising model on a general planar lattice L, which proceed 
via an associated dimer problem and use Pfaffians, are simplified by constructing a lattice L4 (the 
"terminal lattice" derived from an "expanded lattice" of L) for which (A) the allowed dimer con­
figurations are in one-one correspondence with allowed Ising polygon configurations on L, and which 
(B) is planar if L is planar so that Kasteleyn's theorem may be used directly to construct the appro­
priate Pfaffian. This is in contrast to previous use of nonplanar associated dimer lattices for which 
the correspondence is not one-one, so that is has been necessary to prove a somewhat obscure "cancel­
lation theorem." 

1. INTRODUCTION 

SINCE Onsager's famous solution of the Ising 
model on a plane rectangular lattice,l a number 

of alternative and simpler derivations have been 
discovered. One of the most straightforward of these 
derivations relates the Ising configurational prob­
lem2 to the combinatorics of hard dimers3

•
4 on a 

suitable associated lattice. This derivation, which 
has been expounded by Kasteleyn,6.6 by MontrolV 
and by Hurst and Green,8 has the additional ad­
vantage of illuminating the problem as to why only 
planar Ising lattices are analytically solvable. The 
purpose of the present paper is to show how this 
approach can be simplified still further, and in a 
way that removes a residual obscurity concerning 
the significance of the nonplanarity of the associated 
dimer lattices which have been employed previously.9 

The main steps in the dimer solution of the Ising 
problem are: 

(a) The zero-field Ising model partition function 
Z(T) for a lattice L, which has a bond for each inter­
action term J ;jS;Sj between spins i and j, is expressed 

* Perlnanent address: Department of Chemistry, Cornell 
University, Ithaca, New York. 

1 L. Onsager, Phys. Rev. 65, 117 (1964). 
t For reviews of the Ising configurational problem and 

Onsager's solution, see G. F. Newell and E. W. Montroll, Rev. 
Mod. Phys. 25, 352 (1953); C. Domb, Advan. Phys. 9, 149 
(1960). 

a P. W. Kasteleyn, Physica 27, 1209 (1961). 
, H. N. V. Temperleyand M. E. Fisher, Phil. Mag. 6, 1061 

(1961); M. E. Fisher, Phys. Rev. 124, 1664 (1961). 
6 P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963). 
e P. W. Kasteleyn, chapter entitled "Graph Theory and 

Crystal Physics," in Proceedings of the NATO Summer School 
on Graph Theory and Theoretical Physics, F. Harary, Ed. 
(to be published). 

7 E. W. Montroll, chapter 4 entitled "Lattice Statistics," 
in Applied Combinatorial Mathematics, E. F. Beckenbach, Ed. 
(John Wiley & Sons, Inc., New York, 1964). 

8 H. S. Green and C. A. Hurst, Order-Disorder Phenomena 
(Interscience Publishers, Inc., London, 1964). 

D Among other derivations are those of M. Kac and J. C. 
Ward, Phys. Rev. 88, 1332 (1952), and of T. Schultz, D. 
Mattis, and E. Lieb, Rev. Mod. Phys. 36, 856 (1964). 

in terms of the generating function T(Vii) of con­
figurations of "polygons" drawn on L according to 
the rules: 

(i) the lattice bond (ij) in a polygon carries 
a weight 

V;i = tanh K;j, K;; = J;;/kT; (1) 

(ii) an even number of bonds r (including r = 0) 
meet at each site i of L.2 

(b) The configurational problem for polygons on 
the lattice L is related to a dimer problema .• on an 
associated lattice L4. The corresponding dimer 
generating function A(wkI) counts all configurations 
in which: 

(i) each bond (kl) of L and its two terminal 
vertices k, l can be occupied by a "dimer" of weight 
Wkl (related to the Vii) and 

(ii) each site k of L4 is occupied by one and only 
one dimer. 

(c) By associating properly chosen signs with 
the weights, an antisymmetric matrix A = [akl), 
au = ±Wkl = -alk, is constructed whose Pfaffian10 

Pf(A) is equal to the required generating function. 
(d) The determinant of A is evaluated asymp­

totically for large regular lattices in a straight­
forward way by using the cyclic (or almost cyclic) 
properties of A.2.7 In view of the basic resultlO 

[Pf (A)]2 = Det (A), (2) 

this yields an asymptotic expression for the gen­
erating function T(Vij), and hence for the partition 
function Z(T) and the limiting free energy per spin. 

N ow, in a fundamental theorem on the dimer 
problem, Kasteleyn6

•
6 has shown that for an arbi­

trary planar lattice a single Pfaffian can be con­
structed which is exactly equal to the generating 

10 See T. Muir, A Treatise on the Theory of Determinants 
(Cambridge University Press, London, 1904), and Refs. 3-8. 

1776 
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function of dimer configurations; in particular, each 
dimer configuration is counted with a positive sign. 
Conversely, for nonplanar lattices either many 
Pfaffians are required or, in general, some con­
figurations are counted negatively.6.6 However, 
following the original paper by Hurst and Greenll 

(in which Pfaffians were first introduced for the 
Ising problem), the associated lattice Lt>. in step (b) 
has previously5-S been taken as the corresponding 
"terminal lattice" L T

, which, in general, is non­
planar as illustrated for the square lattice in Fig. 
1.12

•
13 Furthermore, the correspondence between 

allowed polygon configurations on L and allowed 
dimer configurations on LT is not one-one; rather, 
it is one-one for some configurations but one-many 
for others, as illustrated in Fig. 2 for a vertex 
of the square lattice. In view of the nonplanarity 
of L T

, Kasteleyn's dimer theorem cannot be used 
in step (c). If, nonetheless, one constructs the "best" 
possible single Pfaffian, one discovers that those 
dimer configurations, counted incorrectly with a 
negative sign, miraculously cancel the errors due 
to the lack of one-one correspondence with the 
polygon configurations, so that the latter are finally 
counted correctly, and the day is saved!14 Although 
it has been proved that this surprising cancellation 

s 
FIG. 1. Pa.rt of the square lattice S and its associated nonplanar 

terminal lattice ST. 

U C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1054 
(1960). 

11 The name "terminal lattice" has been introduced by 
Kasteleyn in Ref. 6. For a general lattice L the terminal 
la.ttice LT is constructed by replacing a site i of L at which q. 
bonds meet by a "city" or "cluster" of gi sites one on the 
termination of each incident bond ("external" bond of LT). 
These q. sites are then joined by all possible "internal" bonds 
so that the city becomes a "complete graph" of order qi. 

11 For the case of lattices with sites of odd coordination 
number, such as the honeycomb, the augmented terminal 
lattice LT+, in which the city has an extra "dummy" terminal, 
has been proposed by Kasteleyn, or some equivalent device 
has been used (Ref. 8, pp. 207-9). 

U What happens for the square lattice is that all con­
figurations of dimers at a city are counted correctly except 
the last one shown in Fig. 2 where the dimers cross. This is 
counted with weight -1 so that the total weight of the r = 0 
configuration is 1 + 1 - 1 = 1 as required. For the triangular 
lattice, configurations of r = 6 and 4 bonds are in one-one 
correspondence, but for r = 2 and 0 the correspondence is 
one-three and one-fifteen, respectively! The details of the 
subsequent cancellation are thus more subtle. 

+ 
----L 

, . 
-t-

· · · 

I 
I 

----i----
: 
I 

, 
: 
I r=2 

r=O 

FIG. 2. Some allowed configurations of r polygon bonds at. 
a vertex of the square lattice and their associated allowed 
dimer configurations on the terminal lattice illustrating the 
lack of one-<>ne correspondence. 

of miscounting with lack of correspondence can be 
arranged to hold for vertices of any degree, and 
hence applies to all planar Ising lattices,s·16 the 
situation remains mysterious. Clearly, it would be 
more satisfactory if these rather inelegant complica­
tions could be avoided in all cases by the construction 
of an associated lattice Lt>. satisfying the conditions: 

(A) polygon configurations on L are in one-one 
correspondence with dimer configurations on 
Lt>., and 

(B) Lt>. is a planar lattice (when L is planar) so 
that Kasteleyn's basic theorem may be em­
ployed directly to construct the appropriate 
Pfaffian. 

As we show below, such a lattice can readily 
be found. It is the terminallattice12 of an" expanded 
lattice" LE

, constructed from L by "expanding" 
each vertex at which more than three bonds meet 
into a group of vertices of degree three (i.e., at 
which exactly three bonds meet). 

2. EXPANDED LATTICES 

The associated lattice Lt>. = (LE)T, which we 
eventually construct (see Fig. 6), could be introduced 
immediately, and one might then verify directly 
that it always satisfies the conditions (A) and (B). 
However, the general proof is a little simpler, and 
one obtains more insight into the problem if one 
proceeds in two stages. Firstly, we show that the 
partition function of the Ising problem on an ar­
bitrary lattice L can always be derived from the 
partition function of an expanded lattice LE in 

15 P. W. Kasteleyn (private communication). 
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FIG. 3. Reduction of the honeycomb to the square lattice 
in the limit K* -+ <x>. The reverse transformation represents 
an "expansion" of the square lattice. 

which no vertex has degree greater than three. 
Secondly, the precise equivalence with the dimer 
problem on the corresponding terminal lattice is 
demonstrated. Finally, it can be seen how the 
intermediate lattice L E couId be bypassed. 

For convenience, we take the Ising partition func­
tion of an arbitrary lattice L to be 

Z(T; L) = E exp [E<L) K;;(SiS; - 1)], (3) 
.,-.:1:1 (ti) 

where the first sum runs over the values Si = ± 1 
for each vertex i in L and the second sum runs over 
all bonds in L. The interaction parameter Ki; is 
defined in (1) and is positive for ferromagnetic 
interactions which tend to align coupled spins. The 
inclusion of the term -1 in the exponent merely 
ensures that the zero of energy corresponds to the 
totally aligned state Si == 1 (all i). (If Kii ~ 0 for 
all i, j, this will be the ground state, but otherwise 
it need not be.) 

Now, observe that, if the limit KGb = K* ~ + 00 

(or Jab = J* ~ (0) is taken for some pair of spins 
a and b linked by a "starred bond" in L, then these 
two spins become "locked" together, so that So == Sb, 

since any terms in (3) with s,. = -8b include a 
factor exp( -2K*) that approaches zero. Corre­
spondingly, if a 8et of bonds in L is starred, we 
see that 

lim Z(T; L) = Z(T; LR), (4) 

where LR is the "reduced lattice" obtained from L 
by identifying all groups of sites a, b, c, ... linked 
together by starred bonds and deleting the now 
redundant starred bonds. Perhaps the simplest in­
stance of this reduction is the well-known relation 
between the honeycomb and the square lattices 
which is illustrated in Fig. 3. 

Conversely, let us construct an" expanded lattice" 
LE from L by replacing each vertex of degree q ~ 4 
in L by a "cee" of (q - 2) vertices of degree three 
and (q - 3) extra "supplementary" bonds as shown 

in Fig. 4. (If one wishes to preserve some symmetry, 
one couId alternatively use, here and below, a closed 
"ring" of q vertices and q supplementary bonds, 
although this entails the addition of more vertices 
and bonds than necessary.) It is evident that if L 
is a planar lattice then so is LE. Furthermore, 
vertices of LE have degrees one, two, or three only. 

Now, consider the Ising problem on LE in which 
each supplementary bond is assigned a parameter 
K* while each "primary bond" has the parameter 
of the corresponding original bond in L. By Eq. (4) 
we then have 

Z(Tj L) = lim Z(Tj L E
), (5) 

K*-+co 

so that quite generally one only needs to solve the 
Ising problem on lattices with vertices of degree 
three or less! 

For completeness we now sketch step (a) of the 
general derivation. The identity 

exp (Kij8;8;) == cosh Kii [1 + Vi;Si8;], (6) 

where Vi; = tanh Kij holds for any variables 8i3; 

taking only the values ±1. Introducing this expres­
sion into (3), expanding the products of factors 
[1 + Vii8;8j], and using 

E (8ir = 2 for r even, 
.,-:1 = 0 for r odd, (7) 

yields the well-known result 

Z(Tj L) = 2N[II e-K'I cosh Kij]T(v;;; L), (880) 
(ij) 

where N is the number of vertices of L (i.e., the 
number of spins) and 

T(Vi; j L) = E II Vuh (8b) 
rILl <uhler 

is the generating function of allowed polygon con­
figurations r(L), constructed on L according to the 
rules (ai) and (aii) stated in the Introduction, 
namely, if the bond (gh) occurs in the configura­
tion r(L) (which it does at most once) it carries 

4 

FIG. 4. The expansion of a general vertex of a lattice L into a 
"cee" of q-2 vertices of the "expanded lattice" LE. 
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a weight factor V.A, and in view of (7), an even 
number, r, of bonds meet at each vertex of L. 

For polygon configurations on an expanded lattice 
L B

, we naturally assign a weight v* = tanh K* to 
each supplementary bond while each primary bond 
retains its original weight Vii' The limit K* ~ CD in 
(5) may then be taken explicitly, and we obtain 
finally the general relation 

Z(T; L) = 2N [II(L) e-KH cosh K ii] 
(ij) 

X T(vii, v* = 1; L E
), (9) 

where the product runs only over the primary bonds 
of LE (i.e., the original bonds of L). In obtaining the 
factor 2N in (9), we have used the fact that, if N* is 
the number of vertices of LE and M* the number of 
supplementary bonds, then N* - M* = N, since 
each supplementary bond can be associated with pre­
cisely one of the additional "cee" vertices, as may 
be checked in Fig. 4. 

3. RELATION TO DIMER PROBLEM 

To perform step (b) and relate the polygon con­
figurations on LE to a dimer problem, we now intro­
duce the terminal lattice of L E

, namely, Lfl = (LE)T. 
This is constructedI2 by replacing each vertex of 
LB of degree two by a pair of new vertices joined by 
an "internal bond" and replacing each vertex of 
degree three by a triplet of new vertices joined by 
a triangle of internal bonds (see Fig. 5). Evidently, 
this terminal lattice Lfl will be planar if and only if 
Lfl is planar. (This is, of course, the point of removing 
the vertices of higher degree from L.) 

We now set up a one-one correspondence between 
polygon configurations on LE and allowed dimer 
configurations on Lfl [see, rules (bi) and (bii) in 
the Introduction). With the presence of any polygon 
bond on LB

, we associate the absence of a dimer on 
the corresponding" external bond" of Lfl and vice 
versa. I6 By checking all the possible bond configura-

-­a'''' 

,," 
"0',, ,./ 

--- /' 9. =2 

I 
I 
I 
I 

A 
I 

I q =3 
A 

,,' ' ... 
" '. 

Lil. 

FIG. 5. Vertices of degree q = 1, 2 and 3 of LE and their 
corresponding cities in the termmai lattice Lfl = (LE)T 
showing the one-one correspondence of allowed bond and 
dimer configurations. 

tions at a vertex of degree 1, 2, or 3 in Fig. 5, one 
sees that the allowed dimer configuration on the 
internal bonds of Lfl is always unique (in contrast 
to the Kasteleyn-Hurst-Green situation pictured in 
Fig. 2). 

Suppose .£l(Wii, w*, w'; Lfl) is the generating func­
tion, defined in analogy to (8b), for dimer configura­
tions on Lfl in which (i) a dimer on an internal bond 
carries weight w', (ii) a dimer on an external bond 
carries weight w* if it corresponds to one of the 
M* supplementary (i.e., starred) bonds of L E

, but 
(iii) weight Wi; if it corresponds to a primary bond 
of LE (i.e., to an original bond of L). To obtain the 
correct relative weights for the polygon configura­
tions, we may put w' = 1 and must then set w* = 
I/v* and Wi; = I/vij, since a polygon bond corre­
sponds to the absence of a dimer. The dimer con­
figuration in which all the external bonds of Lfl are 
occupied then has weight (v*)-M*n(Vii)-I. Since the 
corresponding polygon configuration on LE has no 
bonds, it should have weight unity. Combining these 
observations we see that one-one correspondence is 
expressed by 

T( *. LE) - ( *)M*[II(L) ) A( -1 *-1 I'Lfl ) Vii' V , - V Vi; "'" V ij, V " . (10) 
(ij) 

Substitution in (9) yields the final identification of the Ising problem on L with the dimer problem on 
Lfl, namely, 

Z(T; L) = ~[II(L) vi;(1 + Vij)-Ij .£l(V-:~, 1, 1; Lfl), (ll) 
(ij) 

which completes step (b).(Note vi (1 +v) =e-K sinh K.) 

IS In previous treatments, the presence of a polygon bond has been associated with the presence of a dimer, but our 
choice is simpler in general, since it avoids the need for extra "dummy" vertices at sites of L (or LE) of odd degree (see 
Ref. 13). 
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FIG. 6. Direct transformation of a general vertex of a lattice 
L to a "chain of triangles" on the associated dimer lattice LA 
which is planar if L is planar. 

If we perform the transformation to the terminal 
lattice on a general "cee" of LE derived from a 
vertex of L of degree q (see Fig. 4), the net result 
is to replace the vertex by a II chain of (q - 2) 
triangles" as illustrated in Fig. 6. Altogether 3(q - 2) 
vertices and 4q - 9 extra II secondary" bonds are 
introduced. Clearly, LA is planar if (and only if) 
L is planar. One might now check directly that 
climer configurations on the chain of triangles and 
their incident primary bonds are in one-one corre­
spondence with polygon bond configurations at the 
vertex of the original Ising lattice L. Then the basic 
relation (11) could be written down directly from (8) 
without mention of LE. The detailed verification of 

t . 
I 

+ 
----1-t 

I 
I 
I -1----

+--+- ++ 
-i~--- --+- +-+-

-+-
I . 
I 

----t----. 
I 

FIG. 7. Detailed verification of the one-one correspondence 
between polygon bond configurations at a vertex of degree 4 
and dimer configurations on the corresponding chain of two 
triangles on L/J.. 

the direct transformation to LA for a vertex of 
degree q = 4 is displayed in Fig. 7, which should be 
compared with Fig. 2. Our analysis via the expanded 
lattices assures us that this correspondence will be 
exact for any q if dimers on all the secondary bonds 
are assigned unit weight while those on the primary 
bonds are assigned the weights Wjf = l/v;;. 

Evidently, for q = 4, the chain of triangles in­
volves two more sites and one more bond than the 
corresponding terminal city. For q ;::: 6, however, 
the number of bonds in the chain is the same as, 
or less than, in the corresponding city, although 
the number of points is, of course, always higher. 
This seems a small price to pay, however, for the 
simplicity of planarity and one-one correspondence. 

4. REMAINING STEPS 

For completeness we sketch the remaining steps 
(c) and (d) of the derivation although they are 
not new. To associate signs with the dimer weights 
Wkl and thereby construct an antisymmetric matrix 
A = [au], we follow Kasteleyn3.5.6 by orienting the 
bonds of the lattice LA and adopting the convention: 
if the arrow on a bond (kl) runs from vertex k to vertex l, 
the corresponding matrix element is akl = +Wkl = -aa 
and vice versa. [Note an .. == 0 if there is no (nm) bond.] 

Now, for a planar oriented lattice embedded in 
the plane, we may define the "orientation parity" 
of a face to be "clockwise-odd" (or even) if the 
number of bonds in its perimeter (or" contour cycle") 
oriented in a clockwise sense is odd (or even). 
Kasteleyn's fundamental analysis5

•
6 may then be 

summarized in the following theorem: 

Theorem: Any planar lattice LA can be oriented so 
that the orientation parity of each face is clockwise­
odd and the Pfaffian Pf(A) of the corresponding 
anti.'lymmetric matrix A is then equal to the gen­
erating function d(W.!:I) for dimer configurations 
onLA

• 

The use of this theorem is demonstrated in Fig. 8 
which displays a suitable orientation of the dimer 
lattice SA = (SE)T appropriate to the Ising problem 
on the rectangular lattice. Note that this is also the 
terminal lattice HT of the honeycomb lattice! The 
clockwise-odd parity of each face is readily checked. 

Using the labeling shown in Fig. 8 and the weights 

(12) 

required for the Ising model by (11) (but retaining 
Va r!' 1 so that the honeycomb Ising lattice can also 
be described), the matrix corresponding to Fig. 8 
may be written in compact notation as 
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0 1 1 
-I 

-W1Wl 

-1 0 1 -1 
-W2W 2 

[AJ,; 
-1 -1 0 Wa 

-Wa 0 1 1 

W 1Wl -1 0 1 

W 2W2 -1 -1 0 
(13) 

where the factors wtl and w:1 denote matrix elements 
in the blocks (i ± 1, j) and (i, j ± 1), respectively. 

The construction of the matrix A completes step 
(c). To illustrate the final step in the derivation of 
the Ising partition function, we consider an n X m 
rectangular Ising lattice of N = nm sites with 
interactions J 1 horizontally and J 2 vertically, and, 
at the same time, the corresponding honeycomb 
lattice of 2nm sites and interactions J 1, J 2, and J a. 
By (11), (2), and Kasteleyn's theorem, the free 
energy per spin in the thermodynamic limit of an 
infinite lattice is 

-F/kT = lim (l/nm) In Z(T; L,. .. ) 

= 2 In 2 + In VlV2Va 

- In (1 + v,)(1 + v2)(1 + va) 

+ lim ! (l/nm) In Det (An .. ), (14) 

where for the rectangular lattice we must put 
Vg = v* = 1. 

Now the matrix A for this problem is cyclic in 
6 X 6 blocks except for perturbations due to missing 
interactions at the edges of the lattice. (If periodic 
boundary conditions had been imposed, the lattice 
would no longer be planar and four Pfaffians would 
be needed to express the dimer generating function 
exactly.a) Since we are interested only in the value 
of Det(A ..... ) for a large lattice, however, we may 
(rigorously) neglect the departures from strict perio­
dicity and block diagonalize An .. to sufficient approxi­
mation by the standard unitary transformation. The 
Cr, s) block will have the form (13) with 

(15) 

-F/kT = In 2 - (Jl + J 2)/kT 

FIG. 8. The dimer lattice Lil = (SE)T = HT associated with 
the Ising problem on the square, S, and honeycomb lattice H, 
showing a suitable clockwise-odd orientation of the bonds. 

where 

r = 1,2, ... m, 
(16) 

tMs) = 27rs/n, s = 1,2, ... n. 

The logarithm of Det(An .. ) is then expressed as a 
sum of nm terms of the form In Det[A"",J,.. In the 
limit n, m -+ co, the sum becomes an integral and 
we obtain the symmetrical result 

-F/kT = 2In 2 - In (1 + v1)(1 + v2)(1 + va) 

+ !(27r)-2 L: depl L: dep2 In D(cpl' CPa, CPa), (17) 

where CPt + CP2 + CPa = 27r and 

D(cpl' CP2, CPa) = 1 + v~v; + v;vi + v=v~ 
- 2(1 - VDV2Va cos CPl - 2(1 - V;)VaVl cos CPa 

- 2(1 - Vi)VIV2 cos CPa. (18) 

This may be checked against the known answer for 
the honeycomb lattice.2

,l7 On putting Va = 1 the 
last term in (18) drops out and (17) is easily reduced 
to Onsager's famous formula for the square lattice, 
namely, 

+ !(27r)-2 L: dflt L: d8a In (cosh 2KI cosh 2K2 - sinh 2Kl cos 81 - sinh 2K2 cos 82), (19) 
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A .method of determining the leading behavior of planar graphs for two-body processes in a spin­
l-sPI~-1 conserv.ed vector current theory is outlined. The leading behavior can be found by in­
spectIon. CoeffiCIents of !ower-ord~r terms can be found explicitly. In a later paper we hope to use 
our methods together With analYSIS of nonplanar graphs to justify the Reggeization hypothesis in 
nth order. 

INTRODUCTION 

I T has been suggested by Gell-Mann et aZ. 1 that, 
in a conserved vector current theory of a nucleon 

interacting with a heavy vector meson, the nucleon 
lies on a Regge trajectory. It had previously been 
thought that there was no class of Feynman graphs, 
which, together with the Born term, generated a 
Regge-pole behavior at high energy. Gell-Mann 
et al.1 verified to fourth order that the leading tenns 
at high energy gave the correct contribution to the 
high-energy Regge-pole behavior. The work was 
extended to sixth order by Cheng and Wu.2 The 
motivation for this series of papers is to develop 
sufficiently powerful techniques with which to study 
the nth order of the Reggeization problem. In this 
first paper, we will content ourselves with studying 
the high-energy behavior of planar meson-meson 
scattering graphs. This is the simplest case to study, 
since the traces of the integrand can be expressed 
as explicit scalar products of the momenta. We have 
the somewhat surprising result that all such graphs 
have a high-energy behavior of t2 lnbt, where b is a 
positive integer dependent upon the topology of the 
graph. This is in contrast to the spinless case, where 
the exponent of t was also dependent upon the topol­
ogy of the graph. We also find that renormalization 
has a significant effect on the high-energy behavior. 
In fact, for any specific order, the overall leading 
behavior is contributed by that graph with the maxi­
mum number of divergent subgraphs. As is well­
known, the leading term for any specific order is of 
little importance, since as we will find in a later 
paper, the leading term is cancelled by tenns from 

* This work was supported in part through funds provided 
by the Atomic Energy Commission under Contract AT(30-1)-
2098. Most of this work was carried out at the Department 
of Applied Mathematics and Theoretical Physics, University 
of Cambridge, England. 

1 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, 
and F. Zachariasen, Phys. Rev. 133, 145 (1962). 

2 H. Cheng and T. T. Wu, Phys. Rev. 140, B465 (1965). 

nonplanar graphs. It is the advantage of our method 
of analysis that we can pick out the important lower­
order contributions as well as the leading term. 

Throughout this paper we will denote the mass 
of the nucleon (meson) by ml (m2)' We will use the 
matrix goo = 1, gu = g22 = g33 = -1. 

1. THE TOPOLOGY OF FEYNMAN INTEGRALS 

We consider a planar meson-meson scattering 
graph G with r lines and l independent loops. We 
label the external mesons with index i (i = 1, 2,3, 4), 
i = 1, 2, (i = 3, 4) corresponding to the incoming 
(outgoing) mesons. Meson (i) has four momentum 
Pi' Further, we denote the boundary of the graph 
joining the vertices of mesons i, j, by bii • It is along 
the boundaries bl2 , b23 , b34 that we carry momenta 
Pl, Ps == Pl + P2, P4' 

Throughout the analysis, it will be convenient to 
consider the graph G drawn on a plane A which, 
in consequence, is divided into Z + 4 disjoint areas, 
A;(j = 1, '" , l) and B;(j = 1, 4, 5, 6), such that 

I 

A = U A; + UBi' 
j-l j 

The first l areas A; lie within the boundary of the 
graph, and it is around the boundary of such an Aj 
that we run internal momentum k; in a clockwise 
direction. The other four areas B;(j = 1, 4, 5, 6) 
are external to the graph, area B; having as part of 
its boundary that boundary line of the graph carry­
ing external momenta Pi' where P6 is defined to be 
zero momentum. An example of a graph properly 
labeled is given in Fig. 1. 

We wish to consider two forms of the Feynman 
integral F G corresponding to the graph G. The first 
form derived from the Feynman prescription 3 is, as 
is well-known, an integral over the internal momenta 
of essentially the product of r meson and nucleon 

a R. P. Feynman, Phys. Rev. 76, 769 (1949). 

1782 
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FIG. 1. The two-fermion loop graphs. 

propagators. We will refer to this integral as IJ. 
Chisholm 4 transformed this expression for F G into 
a form that explicitly exhibited F G as a function of 
the invariants of the system. This was achieved by 
first introducing Feynman parameters and then 
integrating over the internal momenta. The final 
form for F G is an integration over the Feynman 
parameters of a function of the Feynman parameters 
and the invariants and parameters of the system. 
We will denote this integrand by I~. I ~ can be ex­
pressed in terms of two functions C and D'·5 and 
certain derivations of these two functions. We will 
assume that the form and topological structure of 
these two functions are well-known. In particular, 
we can write D as an (l + 1) X (l + 1) determinant 
in the form 

D= 
c 

: b1 
1 
1 
1 
1 

: b, 
--------1--
bl , '" ,bz : () I 

(1.1) 

• J. S. R. Chisholm, Proc. Cambridge Phil. Soc. 48, 300 
(1952). 

5 R. J. Eden, Phys. Rev. 119, 1763 (1960). 

where b, (i = 1, ... , l) are linear functions of the 
external momenta of the problem PI, p" P5, the 
coefficients being linear functions of the Feynman 
parameters. b, can be written down immediately 
from the momentum structure of the graph. We 
consider each of the r, lines traversed-by momentum 
k,. Suppose the qth of these r, lines carries a total 
momentum of k, - ki + P., where areas A, and Ai 
have this line as a common boundary and P. is the 
external momentum carried by this line, then 
b, = 2:;:1 a.p., where a. is the Feynman parameter 
for the qth line. For instance, for the graph of Fig. 
1, b2 = a2P5' () is also a function of the parameters 
and momenta, but we will not be concerned with 
its structure. 

We now wish to consider the derivations X, 
(2C)-laDjab •. As a determinant 

, 
0 I 

C 
I 

1 
I 

1 
Xi 

I 
(1.2) =C I 

I 
0 I 

--------1_-
b" ... , b, : 0 

where all the entries in the final column are zero 
except the entry in the ith row which is unity. Xi 
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can thus be written as a sum over momenta PI, P4, Ps 
and we define the coefficients by X, == X~'Pl + 
X~'P4 + X~'P5' We will also need to study the double 
derivative Xii = (8C)-liiD/abJJb;. As a deter­
minant 

1 
X,; - C 

:0 
c 1 

: 1 
1 

:0 _________ 1 __ 

0 .. ·1 .. ·0:0 

(1.3) 

where the entries in the final row (column) are zero 
except for the entry in the jth column (ith row) 
which is unity. Before we specify the topological 
structure of these functions, we first define a partition 
from one area of the graph to another area of the 
graph as a continuous line in the plane A joining 
arbitrary points in the two areas. The partition only 
traverses lines of the graph and any line just once. 
Further, the partition enters any area at most once, 
and enters any B; area only if one of the points to be 
connected lies in that area. We will refer to a parti­
tion from area Bl to area B4 as at-partition. 

We then have the prescription that -X,;C is 
equal to a sum of terms, there being a one-to-one 
correspondence between these terms and the parti­
tions between area A. and area A;. Each term is the 
product of the Feynman parameters of the lines cut 
by the corresponding partition together with the 
C function for the graph, where the loops traversed 

by the partition have been omitted. We will refer 
to this derived graph as the fragment. 

Similarly, - Xf I C is equal to a sum of terms, there 
being a one-to-one correspondence between these 
terms and the partitions between areas B; and Ai' 
Each term is the product of the Feynman parameters 
of the lines cut by the corresponding partition to­
gether with the C function for the fragment. 

These rules are easily derivable from explicit 
examination of the determinant. As an example, let 
us consider the graph of Fig. 1. We find X;'C 
-{3lf'J2 and X I3C = -{32{33' 

The fact that I: can be expressed in terms of 
C, D, and Xi, X;; functions can be seen from the 
following simple calculation. In the spinless case, 
the typical Feynman integral (F), takes the form 

F = J g da. J IT d4
k j [a,;k,k; + 2b;k; + Or' 

(1.4) 

on the introduction of the r Feynman parameters 
a;. The a,; are the elements of the determinant C, 
each being a linear function of the Feynman param­
eters. Integrating over the internal momentum 4 we 
obtain 

F = (i1l'2)1 (r "( ~ D,t)! J IT dai(C,-21-2/ D,-21). 
r . .-1 

(1.5) 

If, however, in the numerator we had, for instance, 
a factor kl ·le2 then, 

, - J II' J III 4 (k l ·k2
) - [4( - 2)( - 1)]-1 J II' d F = . da; . d k; [ . . k.k. + 2b.k. + OJ' - r r . ai 

,-I ,==1 a" S 1 1 1 .-1 

1 14 (a a) x II d le; a-b 'a-b [a;;k;k; + 2b;k; + 
,~l 1 2-

or(T-2l 
(i1l'2) I (r - 2l - 3)! 

4(r - 2)(r - 1) (r - 3)! 
(1.6) 

X J IT da; (~.~)(C'-21-4/ D,-21-2) 
i-I abl ab2 

= (i1l'2)1 (r ( ~ D' I)! 1 IT da, [(Xl ·X2)(C,-21-2/ D,-21) + 4( -i)(r - 2l - 1)-IXI2(C,-21-3/ D'-2l-1)J. 
r . .-1 

Chisholm evaluated I~ as a sum of terms. Spe­
cifically, 

liT.] 
I~ = L: A.(Cr-21-2-i/D,-21-i) , (1.7) 

,-0 
where [irA] indicates the highest integer below ir" 
where r" is the number of nucleon lines in the 
graph. The first term (i = 0) will be called the basic 
term. Ao is derivable from I ~ in the following man­
ner. Define the function A == I~II~ (Q! - m~) 
where Qp is the total momentum carried by line IJ.; 

then Ao is the same function of the X;(i = 1, ... , l) 
as A is of the variables k •. 

It is notationally convenient at this stage to in­
troduce the functions U,,' u~, U",. We define U" as 

1 

1 
U =-

" C 

I EJ.lkl. 

C : 
1 
1 

1 
) fp.kl 

-- ___ -_-1---
1 

bl , ... , bliP" 

(1.8) 

where the index IJ. refers to a particular line and 
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10,.10< is + 1, -1, or zero depending on whether k. 
appears in the expression for the momentum of the 
line p. with a positive or negative sign or does not 
appear at all. P,. is the external momentum carried 
by the line p.. Thus, for a line carrying momentum 
ki - k j + PI" 01' = Xi - X j + PI" We further 
define O~ as O~ = 'Y' 0" + mi' We can now restate the 
prescription for Ao in terms of 0;. Ao is the same 
function of the O;'s as A is of the variables 
('Y'Q" + m 1). 

0,.. is defined as the following determinant: 
I 
I El'k, 

C :. 
I • 
I • 
1 
I E,.kl - _______ 1 __ _ 

1 
E.k, ••• E.kl I 0 

, if p. ~ v. (1.9) 

The second term (i = 1) in the Chisholm ex-

pansion of I ~ is itself a sum of terms, there being a 
one-to-one correspondence between these terms and 
distinct pairs of o"s. Each of these terms is derivable 
from the basic term by removing the corresponding 
pair of O"s and replacing with a pair of 'Y matrices 
'Ya, 'Ya with a summation over a. Further, this term 
is multiplied by OJ,, P when we remove 0;, O~, where 
P is an operator acting on D in the following manner: 

P(D- m
) = 1'" d{3/[D + {3t 

= 1/(m - l)D"'-I, m ~ 2. (1.10) 

For the third term (i = 2) we remove two pairs of 
O"s, replace with 'Y matrices, sum and operate with 
0I', .. 0" ... p 2

• The other terms in the expansion are 
obtained in an analogous manner. 

As an example of this prescription, we will consider 
the graph of Fig. 2. Here, 

I~ _ Kh2d'['Y'(Ps + k l) + md'YPu21Iu4'Y~['Y·(-kl) + md'Y'l'udga~glh 
- [CPs + k1/ - m~][k~ - m;][(Pl + k})2 - m;][(p4 + kl)2 - m~l 

(1.11) 

where K is a function of the parameters of the graph. 
The basic term of the Chisholm expansion is there­
fore 

(1.12) 

where we index the lines with the Feynman param­
eter of the line. Thus O~, = 'Y' (Xl + P s) + mi' 

The second and (in this case) the last term in the 
Chisholm expansion is 

2. THE LEADING BEHAVIOR OF THE 
TWO-NUCLEON LOOP GRAPH 

We wish to determine the leading behavior of the 
integral F G (where G is the two-nucleon loop graph 
of Fig. 1) as the momentum transfer variable t == 
(PI - P4)2 becomes large. For definiteness, we will 
consider that amplitude where all meson heHcities 
are zero in the center-of-mass frame. Using the 
helicity vectors specified by Gell-Mann et al, 1 the 
polarization vectors el, e2(ea, e4) are linear sums over 
PI and P5(P4. and Pr,), where e, is the polarization 
vector for meson (i). We argue in five steps. 

A. Straddling 

Let us consider first the basic term. If Ao were 
unity, then we would have the spinless problem. 

.... 

( 

) 

P. 
FIG. 2. A graph with a simple Chisholm expansion. 

The determination of the leading behavioro- s is then 
essentially equivalent to finding the maximum num­
ber of shortest paths through the graph connecting 
some vertex of the boundary line b23 with some vertex 
of boundary line b14• The leading term of the Feyn­
man integral in the limit of large t derives from suc­
cessive integration over small neighborhoods of the 
origin of the sets of Feynman parameters of those 
lines in the shortest paths. To be specific, we intro-

. & J. C. Palkinghorne, J. Math. Phys. 4, 503, 1393 (1963). 
7 G. Tiktopoulos, Phys. Rev. 131, 480 (1963). 
8 P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 

22, 263 (1963). 
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duce the scaling transformation of Federbush and 
Grisaru.

8 
For a Ret of Feynman parameters ai, "', 

a1>+i, we transform to the variables p, ai, "', ap+i 
with the constraint E~:: a; = 1. P is termed the 
scaling parameter of the set and parametrizes the 
region of integration by planes parallel to the plane 
E:+o a; = 1. Writing D = gt + h we define a d­
linell as a set of Feynman parameters such that 

(a) gh- l is zero when these a's are set to zero. 
(b) On transforming to the corresponding scaling 

variables, there remains a factor pd
-

l in the numera­
tor of the Feynman integral I; (in the spinless case, 
just the basic term with Ao = 1) when we remove 
all overall factors from the C and D functions. 

(c) d is minimal (d is termed the length of the set). 
The integration is performed in the following (p + 1) 
stages: 

(a) Of the set of d-lines take any d-line (d l ) not 
contained as a subset by any other d-line. Integrate 
over a small neighborhood of the origin of the a's 
of d l , keeping only the lowest power of PI, the scaling 
parameter of dl , in g, h, and C. 

(i) 

(ii) 

(iii) 11 11 d-1 d-1 d d e < do' . . P1 ... PM P1' .. PM 
o (P1' .. PMgt + h)e 

as t tends to infinity. The coefficients are necessarily 
convergent. 

In the spin case, Ao is a sum of scalar products 
Xi·X;. Each scalar product Xi'X; is a linear sum 
over s, t, and rn~. Each scalar product Xi' X; con­
tributes an explicit t-factor. However, since the 
coefficient of t in Xi' X; is a function of the Feynman 
paremeters, in general on scaling, powers of P are 
generated which raise the value of d and lower the 
leading behavior. 

To discuss the problem in detail, we need to 
generalize the concept of d-line by relaxing the con­
dition that d is minimal. We will refer to such a set 
as a t-set. Let us consider the effect on the numerator 
Ao of scaling at-set T. Let us consider that part of 
Ao where the difference in the exponent (a) of t, and 
the exponent ({3) of P is a maximum. If we have an 

v!. G. Halliday, Ann. Phys. (N. Y.) 28, 320 (1964). 

(b) Let p~+1g1' p~h1' P~C1 be the g, h, C functions 
where only the lowest terms in P1 have been kept. 
Let us relabel the original a's so that only the first 
e1a'S(al, '" , aeJ belong to dl. Then gl, hI, Cl are 
functions of aI, ... , ae" ae,+l, ... , a r • Let us relabel 
these parameters as aI, '" , ae" ae, +1, ••• , a r • We 
now take any d-line (d2) defined with respect to these 
new a's and new functions gl, hI, Cl not contained 
as a subset by any other d-line defined with respect 
to these new a's and new functions gl, h1' Cl and 
integrate over a small neighborhood of the origin 
of the a's of d2 keeping only the lowest power of 
P2, the scaling parameter of d2 , in g1, h1' Cl • 

(p+ 1). Let p~+1 g1>' p:h1>, p:C1> bethe g1>-1. hp - 1, C,,-1 

functions in the approximation when only the lowest 
power of pp has been kept. If there exist no more 
d-lines and p is maximal, then the leading behavior 
is extractable. In fact, we can apply the well-known 
integration formulas7 

(2.1) 

(2.2) 

(2.3) 

overall factor p'Y-
l in the numerator when Ao is 

replaced by unity, then we say the set T generates a 
leading behavior of t(a-Ill-'Y. Our problem is to find 
those t-sets that maximize (a-{3)--y . .AJ3 we will find 
in a later section, we need only consider those t-sets 
that divide the graph into three distinct, disjoint, 
connected regions-region Ro within the boundary of 
the t-set, and regions Rl and R .. such that Vi-l A; = 

Ro + Rl + R4, and R1 (R4) has part of its boundary 
in common with the boundary b12(bu ). Thus in the 
example of Fig. 1, if we scale loop 3, Ro is Aa, Rl is 
Al + A 2 , and R4 is empty. If A, lies in R l (R4 ) and 
A; in Ro or R4(Ro or R1), then the presence of the 
scalar product X,·X; in Ao raises the leading be­
havior. This immediately follows from examination 
of the coefficient Xf'Xf' + Xf'Xf' of -!t in 
Xi·X;. On scaling, we find that Xf'Xf'(Xf'Xf') 
is proportional to pO when Ai lies in Rl (R4 ). The 
second term is proportional to P or /. If both A, 
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and A; lie in RI or R" then, on scaling, the coef­
ficient of t in X;· X; is found to be proportional to 
p. Therefore, if we say that a scalar product X;·X; 
straddles a t-set if all the partitions from area A, 
to area A; traverse at least one line of the t-set, 
(or if, when i = j, loop l; lies in the scaling set), 
then it is only the scalar products that straddle the 
t-set that enhance the leading behavior for that t-set. 

For the two-nucleon loop graph of Fig. 1, there 
are nine i-sets. For the four rungs i31, i32' i33, i34, the 
structure if the graph permits at most two straddling 
scalar products and hence, at most, a leading be­
havior of t. However, for the loops one and three, 
the structure of the graph permits at most four 
straddling scalar products and a possible leading 
behavior of t2

• Whether we can in fact find a term 
in Ao with four straddling scalar products depends 
on the intricacies of the canceling mechanism in the 
trace calculation. 

B. The Trace Calculation 

We wish to calculate the trace of the matrix 
X 2b == ('Y·ql)('Y·q2) •.. ('Y·Q2b). If Ql = Q2 = ... = 
q2b = q then the relation ('Y.q)('Y.q) = q2 renders 
the calculation trivial. The trace is equal to (q2)b. 
If the trace involves only two momenta PI, P4 , then 
the calculation is almost as simple. We have two 
possibilities. If the scalar products in X 2b are al­
ternately 'Y·PI, 'Y·Pol then the trace is a power series 
in the scalar product (PI·P4 ) of degree b. One can 
successively reduce the product X 2b by use of the 
anticommutation relations. In fact, we find that, 

('Y. P 4)('Y· PI) C'Y. P 4 ) 

= 2(P1 ·P4)('Y ·P4 ) - P!('Y ·PI ). (2.4) 

The trace calculation is thus reduced to the trace 
calculation of the matrix ('Y·PI)('Y·P4) or I, the 
traces in these two cases being 4P I· P 4 and 4, 
respectively. The coefficient of (PI· P ,) b in the trace 
expansion is therefore 2b+1. If the ('Y·PI), h·p,) 
do not always occur alternately in X 2b then the high­
est power of (Pl· P ,) in the trace expansion is less 
than b. 

In our problem we are interested in only two 
momenta PI, P 4, since it is only the product of 
PI with P, that gives rise to a t factor. 

If in the matrix X 2b, momentum q~ forms a scalar 
product with 'Y-matrix 'Yp, and 'Yp derives from a 
vertex (nucleon line) of the nucleon loop, then we 
say that q; is associated with that vertex (nucleon 
line). For loop 3 of the example of Fig. 1, vertices 
'Y' and 8' are necessarily associated with momentum 

P" since the important part of the meson polariza­
tion vectors is proportional to P4. Further, vertices 
a' and {3' must be associated with PI since it is the 
momentum X;, where A; lies in RI, that provides 
the PI momentum. Hence, in the trace of loop 3 
for the basic term, we cannot achieve alternating 
('Y. PI), ('Y. P ,) matrices, and therefore cannot achieve 
a e behavior for loop 3 as a scaling set. 

C. The Second Term in the Chisholm Expansion 

If we examine that term in the coefficient Al 
of the Chisholm expansion, where we have replaced 
g~., g~. by'Y matrices, then it is evident that we can 
effectively generate four straddling scalar products. 
This is because, on scaling loop 3, X33 generates a 
factor p -I equivalent, so far as the high-energy be­
havior of the term is concerned, to a t factor in the 
numerator. The trace is certainly not zero, as can 
be seen by using the relation of Eq. (2.4) to simplify 
the product of the three 'Y-matrices associated with 
vertices a', i3', and nucleon-line i3a, and again to 
simplify the product of the three 'Y-matrices as­
sociated with vertices 'Y', 8', and nucleon-line i34. The 
relevant part of the trace is then, 

4(PI ·P4)2 Tr [('Y·Plhi'Y·P4hP]. (2.5) 

This derived trace is most simply calculated by 
moving the second 'Y" matrix to the left using the 
anticommutation relations and the relation 'Yp'YP = 

41. The coefficient of (P I·P4)3, the highest power of 
(P I ·P4) in the trace expansion, is therefore -32. 
This is a particular case of the general result that 
the coefficient of (P I ·P4)b-1, the highest power of 
(Pi ·P4) in the trace of the matrix gPVX 2b , where 

ql = q3 = ... = qd-I = qd+2 = ... = q2b-2 = PI' 

q2 = q4 = ... qd-2 = gd+1 = ... = q2b-1 = P 4 

and 

Q~ = g!, Q~b = g! 
is equal to (- )2b

+l. 

The leading behavior of the third term of the 
Chisholm expansion of I ~ is therefore seen to be 
e In 2t and derives from the integrand, 

(-32)2(PI·P,)4XIlX3aXi'X:'X;'X;'D-2, (2.6) 

the scaling sets being loop 1 and loop 3. 

D. Other Terms in the Chisholm Expansion 

We immediately observe that there are other 
terms which have this leading behavior. For instance, 
if we replace the Xa factors of i3a, i34 by X 33, we lose 
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FIG. 3. Renormalization of a one-fermion loop graph. 

an explicit t factor but gain a p -1 factor, an implicit 
t factor. The trace calculation again yields (-32). 
The term with two X33 factors and a leading be­
havior of t2 In 2t is therefore 

- !( -32)2Xi3X lIX
P 'xi'(PI ·P4)3C-1D-1

• (2.7) 

Similarly, 

- !( -32)2X~IX33X:'X:·(Pl·P,)3C-l D- 1 (2.8) 

has a e In 2t behavior. It is easy to see that beside 
the term X~IX:3(Pl·P4)2C-2P(D-l), which we con­
sider in the section on renormalization, the only 
other term giving the t2 In 2t leading behavior is 

- !( -32)2XlIX33XI3Xi'X:'(P1 .p,)3C-1 D-1. (2.9) 

E. Renormalization 

We follow the Salam10 procedure of subtracting 
from the original integral certain divergent integrals. 
The form of the integrand of the divergent subtrac­
tion integrals is identical to that of the original 
integral. The difference lies in the expression for the 
momentum of each line. Hence, these integrals can 
be expanded in the Chisholm manner as shown by 
Chisholm.' 

10 A. Salam, Phys. Rev. 82, 217 (1952). 

We exhibit this procedure first for the graph of 
Fig. 3(a). To refer to this graph in the following 
analysis, we will use the symbol G = 123. The graph 
itself is not a divergent graph, but there exists a 
divergent subgraph, loop 2. Renormalization of the 
Feynman integral F 123 is achieved by subtracting 
the Feynman integral F l23 ., corresponding to the 
graph with the momentum labeling of Fig. 3(b). 
Since scalar products kl . k2' k3 • k2 do not occur in the 
integrand n23' of FU3" loop 2 is essentially isolated 
from the other two loops. Hence, we will find it 
convenient to write the Chisholm expansion of n23' 
as a product of the Chisholm expansion for loop 2, 
and loops 1 and 3. Specifically, we write I~23' == 
I~3.n. The Chisholm expansion of I:. consists of 
three terms, of which the last (i = 2) is undefined, 
since P(D- 1

) is undefined. However, this last term 
can be written as In [(D' + a)D'-ll Ja-a> = 
-[ In pJp-o + In D'l, where D' is the D function for 
the loop-2 graph. If we scale loop 2 and expand 
pI~23 in powers of p we find pI~23 = 'L: .. -o p"a .. , where 
ao = I~3" The only divergent part of I~23 is the first 
term aop -1 and this is canceled by the term in the 
subtraction integral Fu3" Thus, to find the high­
energy behavior of the term T == t2Xi'X:'X~2D-2 
of n23' we need to subtract off the first term of the 
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Taylor expansion in p, the scaling parameter for 
loop 2. The renormalized expression for T is then 

TR == t 2x:axi'x:'D-2 
- t2X~~X~Op-4D;2, (2.10) 

where the suffix zero indicates the coefficient of the 
lowest power of p in the Taylor expansion for that 
function. The leading behavior derives from the 
part of T R where only the lowest powers of p have 
been kept in Xl, Xg• X 22• We may then write this 
approximation (T;) for T R as 

T ' -11 d X1>'V11< (-2)gt
3 

(2.11) 
R - 0 X 10A30 (gtpx + h)3 , 

where D = p(gtp + h). The leading behavior for 
the term T R is therefore {~ In t with scaling sets p and 
x. If we had blatantly ignored divergence problems 
and used the simple power counting methods used 
in previous sections we would find the leading be­
havior only e( In t)O with scaling set p. It is in this 
sense that we say renormalization raises the leading 
behavior. We must also consider the leading be-

havior of the remaining finite part of the subtraction 
integral F123" but this is easily seen to be t"', since 
Do is independent of t. 

Let us now consider the problem of renormalizing 
the Feynman integral Fo of the graph of Fig. 1. 
First, we renormalize with respect to loop 3. For 
each divergent term in the Chisholm expansion we 
make a Taylor expansion, the first term being diver­
gent. We represent F 0 pictorially as in Fig. 4, where 
the open circle represents the divergent term of Fo 
and the shaded part the remaining finite part of 
Fo. As in the example of Fig. 3, we expand the ra­
normalization subtraction term for loop 3(F1) into 
a product of Chisholm expansions for loops 1, 2, and 
3. That part of the subtraction term containing, as 
factor, the last term in the Chisholm expansion for 
loop 3, is divergent and cancels the loop-3 divergence 
in Fo. We can pictorially represent F~ as in Fig. 4, 
where the shaded triangle represents the remaining 
finite part of Fl' To renormaIize the Ioop-l divergence 
in F 0 we subtract the loop-l renormalization term 

Fo-F,-F;L! ~ -~~ 

-
FIG. 4. Renormalization of the two-fermion loop graph. 
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(F2) renormalized for loop 3 as represented in Fig. 4. 
Finally we must renormalize for the overall over­
lapping divergence; we subtract a renormalization 
term (Fa) renormalized for loops 1 and 3. 

The only divergent term encountered was the 
last term in the Chisholm expansion of Fo. Suppose 
there were no divergent subgraphs, then the struc­
ture of the term would be eC-2llXij In DD;\ where 
Do is the function D evaluated for particular values 
of 8, t, say So, to. Expand In DD;;l as 

In (gt + h)h- 1 
- In (gto + ho)h-1 

and rewrite the first half of the integral as 

211 l' gt [1 ] t 0 dx 0 II dOl (gxt + h) C2 IIXij . (2.12) 

By the hypothesis, the function in the square brack­
ets has a behavior at least po in the scaling parameter 
for any sub graph. Here exists only one t-set of 
length one, namely x. The high-energy behavior of 
this term is therefore t2 In t. If the only divergent 
sub graphs are logarithmically divergent subgraphs, 
which at the same time constitute t-sets, then the 
integral is still convergent, but the number of t-sets 
of length one is increased to m + 1, where m is the 
maximum number of such subgraphs consistent with 
the delta function constraints. The leading behavior 
of the last term in the Chisholm series for the two­
number loop ladder (Fig. 1) is therefore e In at. 

We have found the leading behavior of only part 
of the renormalized integral Fo - FI - F2 - Fa, 
that part corresponding to the removal of the diver­
gence in Fo. There are two other types of terms to 
evaluate at high energy. 

(a) Terms II, ~ 
The leading behavior is only t2 since D is 

independent of t. 
(b) Term ~, which is again at most t2

• 

Finally, there is the finite part of the overall sub­
traction term to evaluate at high t. This is again at 
most e. 

The leading behavior of the two-nucleon loop 
ladder is (l In at deriving from the renormalized last 
term in the Chisholm expansion. It is not canceled 
by other terms in the expansion. 

3. THE HIGH-ENERGY BEHAVIOR OF THE 
GENERAL PLANAR GRAPH 

A. Nondivergent Terms in the Chisholm Expansion 

We now generalize the results of the previous 
section to the case of general planar graphs of the 

meson-meson scattering process. For simplicity, we 
consider only those graphs such that: 

(i) the nucleon loops have no inner structure-all 
meson lines joined to the loop are directed 
outward; 

(ii) no meson line returns to the same nucleon 
loop. 

We will later remove these restrictions. We calculate 
in the center-of-mass frame where the line defined 
by the 3-momentum vectors of the incoming parti­
cles is taken to be the three axis. The line defined by 
the outgoing 3-momentum vectors is taken to be 
in the 1-3 plane at an angle () to the 3 axis. The 
energy will be denoted by w, the magnitude of the 
3-momentum by q. The helicity vectors are defined 
as in Gell-Mann et aZ. I

• For simplicity, we take all 
helicity values zero; the high-energy behavior is in 
fact independent of the helicity values. 

Suppose the graph G has no divergent subgraphs, 
then, provided we can find a t-set such that: 

(i) all the external lines of the t-set are meson 
lines; 

(ii) no two external meson lines of the t-set are 
one and the same meson line; 

(iii) the graph is divided by the t-set into only 
three distinct disjoint, connected regions­
the region Ro within the boundary of the t-set 
and region Rl (R4) having part of its boundary 
in common with boundary b12 (ba4); 

(iv) there does not exist a meson line of the t-set 
that, when cut, separates the t-set into two 
distinct parts, but does not belong to a con­
tinuous path in the graph from boundary 
b23 to b14 lying entirely in the t-set; 

the leading behavior is t2 In bt, where b is the maxi­
mum number of t-sets that can be scaled for any 
term of the Chisholm expansion, and that can fulfill 
the above four conditions. We will call such at-set 
a T-set. If we cannot find a T-set the behavior is 

2 ' tint. Before we attempt to justify this assertion, 
we introduce additional notation. If a vertex or 
nucleon line is associated with a Pl(P4) momentum 
vector, then we associate that point with an arrow 
pointing to the left (right). Further, we call the 
boundary between the region Ro and Rl (Ra and R4 ) 

the left (right) boundary of the T-set. Now, let us 
~onsider those nucleon loops of the T-set, T I , ad­
Jacent to the left boundary of T 1 • Order them from 
top to bottom. Consider the first loop (l1)' The 
external vertices on the left boundary must have 
arrows to the left. Let all other vertices have arrows 
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to the right. The arrow directions of the nucleon 
lines are determined by the fact that arrow directions 
must be alternating in the trace. Thus two nucleon 
lines must generate an Xu factor. Consider the 
next loop (12), The external vertices of the left 
boundary must have arrows to the left. Vertices 
connected to loop 11 of necessity have arrows to the 
left. Let all other vertices have arrows to the right. 
The arrows of the nucleon lines are determined when 
two of them generate an X 22 factor. The arrow direc­
tions of all other loops in the set are obtained by 
consistent use of this procedure, as they are also 
for the next row of loops. The procedure is consistent 
in that all vertex points in the right boundary have 
arrows to the right. 

That the leading behavior of the term correspond­
ing to the arrow system is e on scaling the T -set 
follows from two assertions: 

(i) the traces are nonzero, 
(ii) the arrow system implies that to each internal 

and external meSOn line of the T-set we can associate 
a scalar product straddling the T-set. 

Thus if, 

eM = number of external meson lines of the T-set, 
eN = number of external nucleon lines of the T-set, 
iM = number of internal meson lines of the T-set, 
iN = number of internal nucleon lines of the T-set, 

and the number of lines (loops) in the set is TT(lT), 
then TT = eN + eM + 3(lT - 1). In our case eN = O. 
The number of straddling scalar products is iM + 
eM = (IT - 1) + eM. Thus the leading behavior 
of the T-set is ta

, where a = -[eM + 3(lT - 1)] + 
felT - 1) + eM] + 21T, namely two. 

If b is the maximum number of T-sets, we can 
find, for any term of the Chisholm expansion, the 
leading behavior is t2 In bt, since the exponent a 
of the scaling parameters is always one less than the 
exponent (3 of D-1

• To prove this, suppose the T-set 
does not include external meson lines of the graph 
and that there are n fragments of the graph which, 
together with the T-set, makes up the graph. Let us 
label them 1, ... ,i, ... , n. If L is the total number 
of loops in the graph 3L + 1 = LT, + TT + eM, 
where T, = 3(1, - 1) + eM, and l,(eM.) are the num­
ber of loops (external meson lines) of the fragment 
i. Further I>MI = 4 + eM' If 'Yi('Y.) is the number of 
Xi; factors associated with the T-set (fragments of 
the graph), and E is the number of scalar products 
not straddling the T-set, then 

a = [3(lT - 1) + eM - 1] - [21] + E - 'Y, 

= 1 - 4 + eM + E - 'Y,; 

(3 = L + 1 - 'Yi - 'Y. 

= L: (l, - 1) + 1 + ep + 1 - 'Y, - 'Y •• 

But E + 'Y. = L(iM, + eM.) - eM = L(l, - 1) + 
4, hence (3 - a = 1. The same result holds if the 
T-set contains external particle vertices. 

There are other terms, derived from this t2 lnb t 
term, that also have a leading behavior of e lnb t: 

(1) Suppose, in one of the loops (l,) of the T-set, 
we remove two X, factors to generate an Xii 
factor, then the trace is nonzero if the two associated 
nucleon lines had opposite arrow directions. If they 
did not, then it is necessary to redirect the arrows 
of the intervening vertices and nucleon lines. This 
is not possible if this section of the loop corresponds 
to part of the boundary of the scaling set. However, 
if the procedure is possible, then in the new term a 
is decreased by one as is (3. Hence (3 - a = 1 still 
holds. 

(2) If we remove two factors X" X;(i ~ j) then 
suppose, 

(a) A, lies in R1, and A; lies in R,. If, in the 
original term, 

(i) Xi(X;) contributed momentum PI(P4), 
then in the rearrangement we lose a power of t and 
replace it with a power of p. Hence the leading 
behavior is reduced by two powers of t. 

(ii) X,(X;) contributed momentum P,(PI), 
then in the rearrangement we lose a factor /t and 
gain a factor p, hence no change in behavior and no 
change in (3 - a. 

(b) Suppose A" A; both lie in Ro, and suppose 
there exists a partition from Ai to A; lying entirely 
within the T-set. Further, if X,(X;) contributes a 
PI(P4) or P,(PI) momentum, then we lose a t factor 
but gain p -I in the rearrangement. Hence neither 
the t2 behavior nor (3 - a is changed. 

(c) Similar arguments can be given for other 
arrangements of Ai, A; in relation to the T-set. 

We thus have the result that the leading behavior 
of any graph G, that has at least one T-set, is t2 In bt, 
where b is the maximum number of T-sets consistent 
with delta constraints and with compatible arrow 
configurations. There are many terms in the Chis­
holm expansion with this leading behavior but they 
are all derivable from a certain basic term that has a 
minimum number of Xii factors; t-sets not satisfying 
the second, third, and fourth conditions for T-sets 
give a lower behavior than t2

• 

We can easily remove the two restrictions placed 
on the set of planar graphs that we would consider. 
Suppose the T-set contains nucleon loops con-
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tradicting the two restrictions. If we remove the 
offending meson lines and the nucleon loops, the 
problem of designating arrows has already been 
solved. Re-inserting the lines, any arrow conflict 
can be resolved by replacing the Xi functions of the 
two nucleon lines adjacent to the source of conflict 
by an Xii function. The analysis is as before. The 
leading behavior from the finite terms of the Chis­
holm expansion is e In bt, where b is the number of 
T-sets consistent with delta-function constraints and 
with compatible arrow configurations. 

B. Renormalization of the General Planar Graph 

Suppose the graph G has p divergent subgraphs 
8 1 , ." , 8.,. We consider the question of renormal­
ization and its effect upon the high-energy behavior 
of the graph under four headings. For the first 
three headings we consider all terms in the Chisholm 
expansion except the last term. Under the last 

heading we consider the last term in the Chisholm 
expansion. 

1. P Non-overlapping Logarithmically 
Divergent 8ubgraphs 

Consider a term T in the Chisholm expansion of 
I; that is divergent for q of these p divergent sub­
graphs. We denote this term by T(Pl, ." , P.) 
where Pi is the scaling parameter for the ith of the 
q subgraphs. Further, if we keep only the lowest 
power of the scaling parameters Pi" ... , Pi. in T 
and denote the derived term by 

T(PII ... ,Pi., ... , Pi., ... , Pi., ... , P.) 

then we can write the renormalized term as 

• 
T.(P!! ... , P.) == L: L: (-1)" 

r-O Tr 

X T(Pl' ... , Pi., ... ,Pi., , Po.), 

(3.1) 

FIG. 5. Divergent graphs for the two-fermion loop graph. 
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where E .. , denotes a summation over all distinct 
sets of r scaling parameters. For the graph of Fig. 
5(a), for example, we have the following divergent 
term in I~: 

(3.2) 

where P2 is the scaling parameter for loop 2. For 
clarity we only specify the integration over P2' To 
renormalize, we need to subtract a divergent term, 

(3.3) 

where the zero suffix on the functions in the inte­
grand indicates the coefficient of the lowest power 
of P2 in these functions. Writing D == P2(A1P2 + Ao), 
where Do = Ao, we find the important part of the 
renormalized term can be written as 

(3.4) 

The part we have ignored can easily be shown to have 
lower leading behavior. Renormalization therefore 
affects the term in two ways-it adds powers of 
P2t to the numerator and replaces P2 by P2X2' There­
fore, when we ignore the divergence of the term, the 
scaling sets giving the leading behavior are found by 
the simple counting methods outlined above. For 
every such scaling set involving P2, we have an 
additional scaling set where we replace P2 by X2' 
Hence for the term (3.2) we have the scaling sets 
loop 4, ('Y1'Y2{Jt!32 P2) , ('Y1'Y2{J1{J2X2) and a leading be­
havior of t2 In at. 

As an example of a term with two divergences, 
let us consider the following term for the graph of 
Fig.5(b). 

T == t
4 

[ dP2 [ dPa 

X XllX22XaaxsaXi'Xi'x:'x:'p:p:D-2, (3.5) 

where P2(Pa) is the scaling parameter for loop 2 
(loop 3). Renormalized for the divergent subgraph, 
loop 2, the term becomes 

X 11 dx (AllPa + A lO) (3.6) 
o 2 [All(P2X2)Pa + AlO(P2X2) + A o1 Pa + Aoo]a , 

where D == P2Pa(A ll P2Pa + A 10P2 + A o1 Pa + Aoo) == D(P2' Pa). We have again dropped some unimportant 
terms. Renormalized for both divergent subgraphs, loop 2 and loop 3, the term becomes 

T2 = (-2)(-3W 11 dp2 [dpa XllOX5SoX;~X;~X~~X~~ 11 dX2 [ dXa A10(AllP2X2 + A01)/D4(P2X2, PaXa) 

+ (_2)t411 dp211 dpa XlloX550X;~X;~X~~X~~ 11 dX2 Da( Au )' (3.7) 
o 0 0 P2X2, Pa 

To express T2 in a form symmetric in X 2 and x" we 
merely integrate by parts in X2 the first part of the 
double integral. We then find, 

T2 = (-2)t
4
{[ dP2 [ dpa XllOX550X;~X;~X~~X~~ 

X [1 1 

dx Au + 11 d All 
o 2 Da(P2X2, Pa) 0 Xa D\P2' PaXa) 

+ (-3) 11 dX211 dXa [A10Aol :- A;I(P2X2)(PaXa)] 
o 0 D (P2X2, PaXa) 

+(-1)11dX211dX3D\ Au )]}. (3.8) 
o 0 P2X2, PaXa 

The leading behavior is t2 In 4t arising from, for 
example, the four scaling sets loop 5, ('Y{'I2{Jl{J2PaP2) ' 

C'Yl'Y2{Jl{J2PaX2) , ('Yl'Y2{Jl{J2XaX2)' We cannot scale 
C'Yl'Y2{Jl{J2XaP2) since this conflicts with delta function 
constraints. 

We can immediately generalize these arguments 
into the following rule. To determine the leading 
behavior of a specific term in I;, we first ignore 
divergences and look for those scaling sets that give 
leading behavior as determined by the simple power 
counting methods outlined in the first section. If 
such a scaling set contains r divergent subgraphs 
with scaling parameters PI, .. , , p, for that term 
and f denotes the remaining Feynman parameters 
of the set, then the 2' sets 
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where 1 ::; q ::; r, and where we replace q of the Pi 

variables by the q corresponding x, variables are 
also scaling sets. Because of delta function con­
straints, we can only scale n + m sets, where n is the 
number determined by power counting methods 
and m is the number of distinct divergent subgraphs 
contained in the n scaling sets. 

However, we must make the proviso that this 
rule is only true if there do not exist two of the r 
divergent subgraphs containing t-paths.1 By t-path 
we mean a continuous path in the graph from bound­
ary b23 to boundary b14• As can be seen from the 
first part of the first integral of Eq. (3.7) that, if 
both divergent subgraphs contain t-paths, then there 
is no part of A lo and AOl proportional to t. The 
leading behavior of this renormalized term is there­
fore lower than that determined by power counting 
methods by a power of t. For the terms we are con­
cerned with in planar meson-meson scattering 
graphs, only the last term in the Chisholm expansion 
is divergent for subgraphs containing t-paths. 

Wardll as used by Chisholm.· We express, the nu­
cleon self-energy part N (p) in terms of a vertex 
part Aip, p) with a zero external meson line. In 
fact, we write 

(3.10) 

where pI.. = AP + (1 - X)Po, and po is some 4-
momentum on the mass shell. The renormalized 
self-energy part, NR(p), is then simply obtained by 
renormalizing the vertex part. Explicitly, 

NE(p) = (-) i 1 

dA (p - PoY 

X [Ap(PA, l) - A~(Pol Po)]. (3.11) 

Similarly, for the meson self-energy divergence 
of Fig. 5(f), the Chisholm series is undefined. If 
Lp.(p, p) denotes the Feynman integral for the 
meson-meson graph of Fig. 5(g) where k = 0, we 
can express the meson self-energy part M(k) as 

11 lA' 
2. The General Case of p Logarthmically Divergent M(k) = 0 dAI () dA2 (k - koY 

Overlapmng and Non-overlapping Subgraphs X (k k )'L (kA kA) 
r" - 0 p. • • (3.12) 

The analysis is identical to that of the previous 
section. One first introduces the scaling parameters 
PI, '" , P. for the r divergencies (1 ::; r ::; p). One 
then renormalizes by introducing the additional 
parameters XI, ••• I X •• The only difference is that 
now there are delta function constraints on those 
scaling parameters p, that are overlapped by other 
divergences. However, the same rules with the same 
proviso still apply. For instance, the term for the 
graph of Fig. 5(c), 

T == t' [ dP2 [ dPa 

X Xi'xi'x:'X:'XllX22XaaX05p~p:D-2 

(3.9) 

where P2(Pa) is the scaling parameter for loop 2 
(loops 2 and 3), is divergent for both the integrations 
P2 and Pa. On renormalizing, we obtain a term similar 
in form to (3.7) and (3.8). The scaling sets for leading 
behavior are loop 5, (J3tfJ2'Yt"I2Pa) , (J31J32'Y1'Y2Xa), 
(J31J32'Yl'Y2x2ala2aa) and leading behavior is e In 4t. 

3. Linearly and Quadratically Divergent Subgraphs 

Let us first consider the graph of Fig. 5(d). In 
this case even the first term of the Chisholm ex­
pansion is undefined. In order to retain the Chisholm 
expansion method, we introduce the technique of 

where kA = Ak + (1 - A)ko, and ko is on the mass 
shell. 

To renormalize M(k) we merely renormalize L,. •. 
Explicitly, 

ME(k) = [ dAl lX, dA2 (k - ko)~(k - koY 

X [Lp.(k\ kX) - Lp.(ko• ko)] (3.13) 

or 

ME(k) = f P.l dP.1 f dP.2 (k - kot(k - ko)" 

X [L~.W'''·. k"'P') - Lp.(ko• ko)]. (3.14) 

Thus to circumvent the problem of renormalizing 
self-energy parts, we consider equivalent graphs 
with self-energy parts replaced by vertex and meson­
meson scattering parts. The Chisholm series is then 
well defined, and the divergences are only loga­
rithmic. The Feynman integral for the original graph 
differs from the Feynman integral for the derived 
graph only in two respects. First, extra parameters 
(x, p.) are introduced, and second, the product of 
the numerators of the two external nucleon (meson) 
lines of the self-energy part is changed from 
h'p + m)h'p + m) [1] to ('Y'P + m)(p - Po) .. 
h'p + m) [(k - ko),.(k - ko).], where p[kJ is the 

11 J. C. Ward, Phys. Rev. 77, 293 (1950). 
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external momentum of the self-energy part. We 
will denote this integral by Jl~. We can write the 
integral as an integral of 1~ over the Feynman 
parameters and A, where 12~ is obtained from j1~ 
by the same Chisholm rules that we obtained 1; 
from I ~ when we define Opp as 

C 
(3.15) 

The analysis of the leading behavior is as before. 
It is evident that the additional parameters A, JJI, JJ2 

can never belong to scaling sets giving leading be­
havior. For instance, renormalizing the term 

(3.16) 

of Fig. 5(e) for the divergent loop 2, we find the 
numerator, after the introduction of the integration 
over x 2 , contains a factor Al (see Eq. 3.4), the t part 
of which is proportional to A2. 

By the rule of Sec. (3Bl), the leading behavior of 
those terms in 1;, for the graphs of Fig. 5(d) and 
5 (f) divergent only for the self-energy parts, is 
t2 In 3t. 

The rule of Sec. (3BI), however, only holds for 
those m divergent subgraphs that are cut by at 
least one t-partition, since the A factors that appear 
in the numerator on renormalization must all have 
a part proportional to t. It is possible for a self­
energy part not to be cut by any t-partition. For 
instance, for those terms in the Chisholm expansion, 
for the graph of Fig. 5(h) divergent only for the 
nucleon self-energy part, have a leading behavior 
at most t2 In 2t. 

4. The Last Term in the Chisholm Expansion 

As explained in Sec. (2E), we consider the leading 
behavior of the expression, 

11 1 
t3 

0 dx [(gC-I)j(gtx + h)] C II Xij, (3.17) 

where D =: gt + h. This term is not divergent for 
those divergent subgraphs containing t-paths. How­
ever, divergences containing no t-paths have to be 
renormalized by using the above analysis. The only 
scaling sets which, together with set x, give leading 
behavior are those T-sets that are logarithmically 
divergent. If there are n such T-sets consistent with 
delta function constraints, and if m is the number of 

FIG. 6. A two-fermion loop graph. 

distinct divergent subgraphs belonging to these n 
sets, then the number of scaling sets giving leading 
behavior is n + m + 1. Thus, for example, the last 
term in 1; for the graph of Fig. 5(a) has a leading 
behavior of t2 In 't. 

The fact that in this rule we do not include the 
divergent subgraphs containing t-paths in calculating 
m illustrates the proviso we made on the rule stated 
in Sec. (3BI). If we renormalize for more than one 
divergent subgraph containing t-paths, the leading 
behavior of the renormalized term is lowered by at 
least one power of t. Hence the term with maximum 
leading behavior is that term where only one diver­
gence containing t-paths is renormalized. Therefore, 
the leading behavior of the term of 1;, where G 
is the graph of Fig. 6 for which both loops 1 and 3 
(and consequently the subgraph consisting of loops 
1, 2, 3) are divergent, is only t2 In 3t. This is, in fact, 
the leading behavior for the complete Feynman 
integral, since no other terms in 1; with t2 In bt(b ~ 0) 
behavior are divergent. This result agrees with the 
leading behavior for the graph of Fig. 1. 

4. SUMMARY 

We can summarize our analysis with the following 
procedure for determining the leading behavior of 
any Feynman integral F G', where G is a planar graph 
in the meson-meson scattering process. 

(a) If G contains no divergent subgraphs, we 
simply determine the maximum number of T-sets 
which can be scaled for anyone term of the Chis­
holm expansion. We can state this differently. If an 
external meson line to a T-set lies in region RI(R,) 
of the T-set, we will call this meson line a p\(p,) 
meson line. We then look for the maximum number 
of T -sets, consistent with scaling delta function 
constraints, and consistent with the fact that two 
T -sets can possess a PI (p,) meson line in common 
only if a vertex of the meson line is common to both 
T-sets. For instance, in the example of Fig. 7, delta-

FIG. 7. Conflicting 
arrow configurations. 
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function constraints allow us to scale the three 
T-sets-Ioops (1 + 4 + 5), loops (2 + 4 + 6), and 
loop 4. But there are no terms in the Chisholm 
expansion for which we can scale all three sets. 
. This is simply because for those terms of the Chis­
holm expansion for which the set consisting of 
loops (1 + 4 + 5) is a e scaling set, meson line (a) 
conveys a PI momentum from loop 2 to pair with 
a P4 momentum in loop 1, whereas for those terms of 
the Chisholm expansion for which the set consisting 
of loops (1 + 4 + 5) is a t2 scaling set, meson line 
(a) conveys a P4 momentum from loop 2 to pair 
with a PI momentum in loop 1. The two classes of 
terms are disjoint. We will call this second constraint 
on the number of T-sets the constraint of requiring 
compatible arrow configurations. Let the maximum 
number of T-sets consistent with delta-function 
constraints and with compatible arrow configura­
tions be n. The leading behavior is then t2 In \ 
where b = max (1, n). 

(b) If G contains divergent subgraphs, then we 
must consider the set of terms of the Chisholm 
expansion that are divergent for a specific collection 
(C) of divergent subgraphs that 

(i) are cut by t-partitions, 
Oi) do not contain t-paths. 

We look for that term of the set for which we can 
scale the maximum number of T-sets. Let this 
maximum number be ne, and the number of the 

divergent subgraphs belonging to the ne T -sets be 
me' 

We then determine the maximum number of 
divergent T-sets consistent with delta constraints. 
Let this number be nl . 

Finally, we determine the number of divergent 
subgraphs belonging to G that 

(i) are cut by t-partitions, 
(ii) do not contain t-paths. 

Let the number be mi. The leading behavior is then 
e In bt, where b = max (nl + ml + 1, no + me)' 

For any order N, the planar graph with maximum 
leading behavior is that graph with the maximum 
number of divergences. To be precise, since all 
graphs of order N have ctN - 1) loops, the maxi­
mum number of scaling sets is (iN - 2). It is 
evident that this maximum is only achieved if 
max ene = n l and the graph consists of n divergent 
one-loop meson-meson scattering graphs with ml 

divergent vertex and self-energy subgraphs such 
that n l + ml = iN - 2. The maximum leading 
behavior for order N is therefore e In iN-It. 
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of Representations of the Groups A2(SU(3» and B2(SO(5» 
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A prescription for the decomposition of the direct product of two irreducible representations of 
A2 and B2 is given, which is completely general and direct, i.e., it does not make use of any auxiliary 
means like Young tableau or Cartan-8tiefel diagrams although it is based on the latter. The addition 
of weights alone under the observation of certain rules gives the desired result. This method can in 
principle be generalized to the semisimple groups of arbitrary rank provided an algebraic expression 
for the multiplicities of the weights contained in an irreducible representation can be found. 

INTRODUCTION 

T HIS work is based on the analysis given by 
Speiserl and by Antoine and Speiser2 ,3 in lecture 

notes and two papers, respectively. These publica­
tions give, among other things, a graphical method 
for the decomposition of direct products of two 
irreducible representations for rank 2 groups. It 
consists in constructing the weight diagram of one 
of the two irreducible representations involved and 
in graphically superimposing this weight diagram 
onto that point in the two-dimensional Cartan­
Stiefel diagram which characterizes the other ir­
reducible representation.4 But since the dimension 
of the diagrams equals to the rank of the group this 
method is limited to rank 2 groups. Due to this 
situation it might be of interest to write down the 
corresponding algebraic treatment for rank 2 groups 
such that the method becomes independent of the 
explicit construction of the diagrams. This algebraic 
method might be then not more limited to rank 2 
groups but have the property that it can be general­
ized to groups of arbitrary rank. 

In this paper a first step in this direction is done 
by giving a complete algebraic method for the de­
composition of direct products for A2 and B 2 • On 
the one hand, this method can be generalized in 
principle to groups of arbitrary rank the only diffi­
culty being to find an algebraic expression for the 
multiplicity structure of the weights contained in 
an irreducible representation for the particular group 
in question. 

On the other hand, this method might be useful 
* Present address: Duke University, Durham, North 

Carolina. 
1 D. Speiser, Group Theoretical Concepts and Methods in 

Elementary Particle Physics (Gordon and Breach Science 
Publishers, Inc., New York, 1962). 

2 J. -Po Antoine and D. Speiser, J. Math. Phys. 5, 1226 
(1964). 

8 J. -Po Antoine and D. Speiser, J. Math. Phys. 5, 1560 
(1964). 

~ J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 

for the decomposition of direct products in A 2 , B2 , 

and D2 themselves, in the case when the dimen­
sionality of the two irreducible representations form­
ing the direct product is high and their weight dia­
grams unknown. In addition this method might be 
used to find the Clebsch-Gordan series by means of 
an electronic computer. In this case the method is 
already completely general, i.e., it works for groups 
of arbitrary rank since then an algebraic expression 
for the multiplicities is not necessary. 

Section 1 lists briefly some of the results given by 
Antoine and Speiser. For details the reader is re­
ferred to the original papers. l

-
a Section 2 contains 

the conditions which have to be observed in order 
that a weight belongs to the Clebsch-Gordan series. 
Section 3 gives the construction of the weight dia­
gram of an irreducible representation D(m) with 
highest weight m for A 2 , and B 2 • Section 4 is a sum­
mary. In the Appendix the decomposition of the 
direct product for A2 in (p, q) notation is given as an 
example. This part is insofar self-contained as it 
gives a working prescription for the decomposition 
for the group A 2 • 

1. 

Let m and m' be highest weights corresponding to 
the irreducible representations D(m) and D(m') 
respectively. Let X(m' + Ro) denote the altematin~ 
elementary sum (a.e.s.)5.6 corresponding to the 
weight (m' + Ro) and x(m) the character of the 
irrep. D(m). Then from 

D(m) ® D(m') = E D(m") (1) 
m" 

the relation 

x(m)X(m' + Ro) = E X(m" + Ro) 
m" 

(2) 

i Also called characteristic. 
s ~ .. Boerner, Representations of Groups (North-Holland 

Publishing Company, Amsterdam, 1963), Chap. 7. 
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can be obtained (see Ref. 1). Equation (2) expresses 
the fact that by adding the weight diagram of the 
irreducible representation D(m) [i.e., the exponents 
of x(m)] to the exponents of the a.e.s. X(m' + Ro) 
all a.e. sums X(m" + Ro) are obtained which cor­
respond to the highest weights m" in the decomposi­
tion of the direct product of the two irreducible 
representations D(m) and D(m'). If only the term 
corresponding to the dominant weight (d.w.) in 
X(m' + Ro) is taken into account, then (2) says that 
by adding the weight diagram of D(m) to (m' + Ro) 
the m" in the resulting weights (m" + Ro) are the 
highest weights of the irreducible representations in 
the decomposition of D(m) @ D(m') if 

(I) all mil are omitted whose a.e.s. is equal to 
zero, i.e., the mil which lie on a singular hyperplane6 

and 
(II) each pair of weights is omitted whose a.e. 

sums differ in sign only, i.e., each pair of weights 
which differs by a reflection SEW only,6 W being 
the Weyl group. 

2. 

In this section the meaning of the conditions (I) 
and (II) is studied. In order to see this meaning it 
has to be known what the application of the Weyl 
group W to a weight m means. This is, however, well 
known and the application of W to a weight m 
consists for the A z groups in all possible permutations 
of its components; and for the Bz and Cz groups in 
all possible permutations of its components together 
with all possible changes of sign. 

Condition (I): If a weight lies on a singular hy­
perplane, then there exists at least one SEW (the 
reflection on that plane) such that Sm = m, i.e., 
that m is left unchanged by S. Knowing how the 
Weyl group operates on a weight it is clear that such 
a weight has at least two equal components for 
Az; and at least two components mi, mj such that 
m. = =l::mj or at least one component mk = 0 for 
Bl and Cz• 

Condition (II): If a pair of weights is such that 
their a.e. sums differ in the sign only, then they go 
over into each other by a reflection SEW. There­
fore, for A I such a pair of weights differs by an odd 
permutation of its components, and for Bz and Cz 

such a pair of weights differs by an odd permutation 
with or without a change of sign of the two permuted 
components or this pair differs simply by having 
a different sign for one component. 

of the irreducible representation D(m) is constructed 
now. 

Since it is known how the Weyl group W operates 
on a weight, only the dominant weights m (d) and 
their multiplicity d have to be found. The whole 
weight diagram is given by applying W onto them. 
Equation (2) can therefore be read as [considering 
the S = 1 term of X(m' + Ro) only] 

(3) 

S ranges over W, 

where after applying conditions (I) and (II) the 
equality sign holds. The dominant weights can be 
found easily. For a given highest weight m they are 
obtained from the relation 

+ kd3 1, 

k. nonnegative integers, (4) 

-{31, - {32, , -(31 the primitive roots of the 
group in question, if only the weights are taken for 
which the condition holds to be dominant.3 

In order to find the multiplicity for these dominant 
weights first the multiplicities of 1/ Il, Il = X(Ro), are 
calculated by using the expression derived for it 
by Antoine and Speiser.2 Then from x(m) = 
X(m + Ro)/ Il the multiplicities of the dominant 
weights will be derived. 

Now, 1/ Il can be written [Ref. 2, (17)] as 

l/Ll = f f ... f exp [i(t kj {3j - Ro, cp)], 
.\:1-0 .\:11-0 ka=O i-I 

(5) 

the k. being nonnegative integers, the /3. all the 
negative roots. The mUltiplicity of a particular vec­
tor of 1/ Il, let's say 'Y, is then given by the number of 
ways 'Y can be written as a sum over all n negative 
roots with different nonnegative integers ki as 

'Y = k 1{31 + ... + kz{3z + '" + k,.{3,. - Ro. 

l ~ n. (6) 

The multiplicities of the dominant weights can 
be obtained from [Ref. 2, (19)] 

X exp {{ t kj {3/ + SCm + Ro) - Ro. cp ]} (7) 

as the number of times a dominant weight M can 
be written as 

3. M = k 1{31 + ... + k ,{31 + ... + k,.{3 .. 

Let m be a highest weight. The weight diagram + SCm + Ro) - Ro (8) 
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with different nonnegative integers k. for every 
8 E W. If 8 E W is not a reflection, this number 
is counted positive; if 8 E W is a reflection, this 
number is counted negative. But from (8) it is 
easy to see that for every given 8 E W the number 
of times M can be written with different coefficients 
k. just equals to the mUltiplicity of the vector 

'Y = M - 8(m + Ro) 

= ki{31 + ... + kf{3z - Ro (9) 

of 1/11. Therefore only the multiplicity structure of 
1111 has to be known, then the multiplicity of a 
dominant weight can be calculated automatically. 

While up to this point the considerations are 
general, the rest of the paper is restricted to A. 
and B.(D. as the direct product Al ® Al is trivial). 
This is due to the lack of knowledge of algebraic 
expressions for the multiplicity structure of the 
dominant weights for the other groups. But doubt­
less, such algebraic expressions can be found for 
other groups too. 

For A. all dominant weights m (tI) corresponding to 
an irreducible representation with highest weight 
m are obtained from the relation 

(10) 

(r, t nonnegative integers, - {31, - {32 the primitive 
roots), if rand t are varied and all weights collected 
for which ml ;::: m2 ;::: ma holds (i.e., the condition 
for a weight to be dominant). The multiplicity for 
some given vector 'Y = r{31 + S{32 - Ro of 1/ II is 
given by the number of ways 'Y can be written as 

(11) 

a, b, c nonnegative integers. 

Therefore for given rand t the multiplicity of 1/ II is 

r + 1, if t;::: r, 
(12) 

t + 1, if r;::: t. 

The multiplicity of a dominant weight M is now 
calculated by using relation (9). From the proper­
ties of the roots it can be seen easily that out of the 
SEW only the identity and the two reflections 8' 
and S" on the planes perpendicular to {31 and {32 can 
contribute to the multiplicity of a dominant weight 
[for any other 8 E W there would be negative r', t' 
in (9)J. From (10) and (9) therefore follows for 
S = 1 

r' = r, t' = t, 

and for S' and 8" 

{t: : m. - ml + t -.1, {tl =,t, 
r - r, r' = ma - m2 + r - 1, 

such that the multiplicity of the dominant weight 
(10) becomes? 

(r + 1)6(t - r) + (t + 1)6(r - t - 1) 

- (m. - ml + t)6(m2 - m1 + t - 1) 

- (m~ - m2 + r)6(ma - m2 + r - 1), (13) 

where 
6(x) = 1, 

= 0, 

x;::: 0 

x < o. 
But this is nothing else than the well-known result 
that the multiplicity of the counters increases by 
1 in each step by going from the highest weight 
along {31 + {3. while it becomes constant as soon as 
the boundary of the fundamental domain is reached 
(Fig. 1). 

For B. the dominant weights are obtained from 

m (tI) = m + r{31 + t{32, 

r, t nonnegative integers, (14) 

if again -{31 and -{32 are the primitive roots and 
only the weights are taken for which ml ;::: m2 ;::: o. 
The multiplicity structure of the dominant weights 
however is much more complicated then as it is in 
the other case (Fig. 2). In order to obtain an ex-

\ 
\ 

\ 
\ 

\ 
.$~ ..... 't2.1-R. ~. 

. FIG .. 1. Weight diagram for At. The highest weight of the 
rrreduClble representation H3, - 1, -2) is denoted by m. The 
arrows show the way the dominant weights are obtamed the 
number~ denotinlS their multiplicity. From S'(m + Ro) ~ Ro 
the dommant weIght (0, 0, 0) can be obtained in just one way. 

7 Reference 3, Fig.~ 6, p. 1563. 
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FIG. 2. Weight diagram for Ba. The arrows indicate how the 
dominant weights of the irreducible representation m == 1(7,3) 
are obtained! the numbers denoting their multiplicity. The 
smallest dommant weight can also be reached from 8'(m + Ro) 
- Ro and 8"(m + Ro) - Ro (in a unique way). 

pression for the multiplicities of the dominant 
weights such an expression is found again first for 
1/11. The multiplicity of any vector 'Y of 1/11, 

(15) 

is given by the number of ways 'Y can be written as 

'Y = a{11 + b{12 + C({11 + (32) 

+ d({11 + 2(12) - Ro, (16) 

a, b, c, d nonnegative integers, 

which is equivalent to all possible ways of expressing 
rand t as 

r = a + c + d, t = b + c + 2d. (17) 

From this relation the multiplicity of a vector 'Y 

with given rand t can be seen to be: 

(1) for even t 

t(r + 1)(r + 2), if t ~ 2r; 

i 2 + 2i + 1 + t(r + 1)(r + 2) - (i + 1)(2i + 2), 

if 2r > t > r; i = r - !t, 

i 2 + 2i + 1, 

(2) for odd t 

i = tt, if t:::; r. 

l(r + 1)(r + 2), if t ~ 2r; 

i(i + 1) + !(r + 1)(r + 2) - i(2i + 1), 

if 2r > t > r; i = [r - !(t - 1)], 

(18) 

Ht + 1)(t + 3), if t:::; r. (19) 

Again, as in the case for A2 it can easily be seen from 
the properties of the roots that only the two domains 
adjacent to the fundamental domain can contribute 
to the multiplicity of a dominant weight. Since they 
differ by a reflection from the fundamental domain 
the multiplicity they contribute is negative. From 
(9) and (14) then follows for S = 1 

r' = rand t' = t (20) 

and for the two reflections S' and S", 

{
r' = m2 - ml + r - 1, {r' = r, (21) 

t' = t, t' = t - (2ma + 1), 

respectively. Thus the multiplicity of a dominant 
weight (14) is given by (18) and (19) subtracting 
the values obtained by inserting the nonnegative 
r', t' of (21). 

4. 

We can summarize therefore: Given two irreduci­
ble representations D(m) and D(m') find the dom­
inant weights m (d) for one of the irreducible rep­
resentations, say D(m'), and their multiplicity 
d(Sec. 3). Form all weights which can be obtained 
by the application of the Weyl group (Sec. 2). All 
these weights form the weight diagram of the ir­
reducible representation D(m'). Add all these weights 
individually to (m + Ro), Ro being one half of the 
sum over the positive roots, and select out the 
weights which have the properties stated in Sec. 2. 
If from the remaining weights Ro is subtracted, then 
all the highest weights in the decomposition of 
D(m) &> D(m') have been obtained. 
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APPENDIX 

As an example, the decomposition is done for 
SU(3) in the (Plq) notation, P = (ml - m2 ), q = 
(m2 - ma). The (Plq) which correspond to the dom­
inant weights of the irreducible representation 
(ll' l2) and their multiplicity are found in the fol­
lowing way (as can be seen from Sec. 3): 

(a) Subtract 2 from one component, add 1 to 
the other. Continue this way as long as for the 
resulting (PIq) holds P ~ 0, q ~ 0, q ~ O. The d.w.'s 
corresponding to this set have multiplicity 1. 

(b) Subtract 1 from both components of (ll, l2) 
and perform (a). The resulting set has multiplicity 
2. Subtract 1 from (ll - 1, l2 - 1) and perform 
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(a). The resulting set has multiplicity 3. Continue as 
long as II - r ;::: 0, I2 - r ;::: 0, r some nonnegative 
integer. The multiplicity increases by 1 with each 
step. 

(c) From .the last set which can be got by (b) 
take the "second" member, i.e., the one which is 
obtained from the member (ll - r, l2 - r) of this 
set by subtracting 2 and adding 1 (there is only one 
such member) and perform (b). From the resulting 
set take again the "second" member and perform 
(b) and so on. The multiplicity does not increase 
further. (See Fig. 1.) 

All the (p, q) which correspond to the weight dia­
gram of (ll' I2) are now obtained by applying the 
Weyl group onto the obtained (p, q). It is easy to 
verify, that the application of the Weyl group to a 
(l~, l~) results in the set (Sec. 2) 

(l{, l~) (l~, l~) (lL lD , l3 = _ (ll + l2)' 

( -l~, -lD (-l~, - l~) (- l{, - lD 

These (p, q) have now to be added individually to 
(ll + 1, l2 + 1). To the resulting set the conditions 
(1) and (II) have to be applied, which are easily 
seen to be (Sec. 2): 

(1) cancel every (p, q) for which 

II = 0 or l2 = 0 or II = -l2 j 

(II) if there occurs a p or a q with a negative sign, 
the (p, q) will be of the form (-l2, - ll) or ( -ll, II + 
l2) or (ll + l2' - l2). Find the corresponding (ll, l2) 
and cancel both. 

The only thing left is to subtract (-1, -1) from 
the remaining set in order to obtain the Clebsch­
Gordan series. 

For the particular values (5, 2) and (4, 1) this 

looks as follows. The dominant weights and their 
multiplicities are 

(4, 1) ~ (2, 2) ~ (0, 3) 

1 (b) 

(3, 0) ~ (1,1) 

(c) 1 
(0,0) 

d = 1 

d = 2 

d = 2 

The sets of equivalent weights with d = 1 added to 
(6,3) are 

(10,4) (7, -2) (1,7) (5, -1) (11,2) (2,8); 

(8,5) (8, -1) (2,5) (4,1) (10,1) (4,7); 

(6, 6) (3, 3) (9,0); 

and the sets of equivalent weights with d = 2 
added to (6, 3) are 

(9,3) (6,0) (3,6); (7,4) (7,1) (4,4); (6,3) 

(5,2) (8,2) (5,5). 

Now, (9,0) and (6,0) have to be canceled [condition 
(1)]. (5, -1) cancels with (4, 1), (7, -2) with one 
of the (5, 2) and (8, -1) with one of the (7, 1) 
[condition (II)]. Thus 

(5, 2) (8) (4, 1) = (9, 3) + (10, 1) + (0, 6) 

+ (1,7) + (7,4) + (9.0) + (1,4) + (3, 6) 

+ (5, 5) + (2, 2) + (8, 2) + (8, 2) + (2, 5) 

+ (2, 5) + (6, 3) + (6, 3) + (4, 1) + (6, 0) 

+ (7, 1) + (7, 1) + (3, 3) + (3,3) + (4,4) 

+ (4,4) + (5,2) + (5,2). 
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The scattering cross section is evaluated for a beam of wave packets of almost arbitrary form. 
It is found that this cross section is the superposition of the cross sections of various plane waves, 
which make up the wave packet without interference. For wave packets of well-defined momentum, 
the usual rule that the scattering cross section is the absolute square of the scattering amplitude is 
regained. 

1. INTRODUCTION 

By a well-known rule, the scattering cross section 
for a static potential Vex) (which falls off at 

infinity faster than Ijx) may be read off the sta­
tionary scattered wave. This stationary wave is a 
solution of the time-independent Schrodinger equa­
tion 

;~ W + 'V2)",~(X) = V(x)"'~(x), (1.1) 

with asymptotic form (for large x) 

",~(x) ~ e,k'" + f~(n - nk)(e'kx Ix). (1.2) 

We use x for lxi, k for Ikl; n stands for the angles 
specifying the direction of the vector x, nk for those 
specifying the direction of k. The differential cross 
section for scattering from direction nk to n is then 

(1.3) 

An elementary approach' derives (1.3) by de­
scribing the incident beam by a plane wave, the 
static situation in which the beam is on by stationary 
scattering waves "': (x). When the outgoing flux de­
scribed by the scattered part of (1.2) is compared 
to the plane wave part of the same wave function, 
Eq. (1.3) follows. A more elaborate treatment (of 
Chew and Low2

) considers a beam of wave packets, 
and shows that Eq. (1.3) is in fact justified, provided 
that certain conditions on the wave packets are 
satisfied. These conditions require that the wave 
packets be well defined in momentum, and be 
broader in space than the range of the potential. 

In this paper, we evaluate exactly the cross section 
for scattering of a beam of wave packets with almost 
no assumptions on their form. This is not difficult, 

* Present address: Physics Division, Argonne National 
Laboratory, Argonne, Illinois.. ., 

1 A. Messiah, Mecanique QuantUJue (Dunod Cle., Paris, 
1959), Tome I, Chap. X, Sec. 3, pp. 315-316 [English transl.: 
John Wiley & Sons, Inc., New York (1961), Vol. 1, I!P. 371-~]. 

• A. Messiah, M ecanique Quantique (Dunod Cle., Pa:ls, 
1959), Tome I, Chap. X, Sec. 4-6, pp. 316-322 [EnglIsh 
transl.: John Wiley & Sons, Inc., New York (1961), Vol. 1, 
pp. 372-380]. 

and the result is surprisingly simple: it is equivalent 
to the superposition of the cross sections of the 
various plane waves involved in the wave packet 
without any interference. For wave packets sharply 
defined in momentum, Eq. (1.3) is regained. 

The wave packet is assumed to contain only 
motion towards the target and no motion away 
from the target. More precisely, if the wave packet 
is described in the space of wave vectors by a func­
tion cf>(k) [see Eqs. (2.1)-(2.3) below], the following 
is satisfied: A "median direction of motion of the 
wave packet" may be chosen with the criterion that 
every wave vector k within the support of cf>(k) 
deviates from this direction by an angle not larger 
than i'll". Apart from this (and normalization), cf>(k) 
is arbitrary. 

2. SCATTERING OF A SINGLE WAVE PACKET 

Consider a wave packet 

<J?(x, t) 

with 

(2.2) 

<J?(x, t) describes the motion of one free particle and 
is properly normalized for all t: 

(2.3) 

A wave packet, which describes the motion of a 
particle influenced by the potential Vex), but be­
comes identical to (2.1) asymptotically for large 
negative time is, 

'I1(x, t) = J (~:~i cf>(k)",~(x) exp [-i(hk2 j2m)t]. 

(2.4) 

This is the wave packet which" describes the scat­
tering of the wave packet (2.1) from the potential 
V(x)." 

We now evaluate the probability that a particle 

1802 
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described by Eq. (2.4) will be detected by a counter 
situated at a distance R from the origin, and blocks 
a solid angle r. This is the same as the probability 
for a particle to be found in a cone of solid angle r 
(with vertex at the origin) and at a distance greater 
than R from the origin. This probability is 

per) = lim 1'" x2 dx f dn \'lI(x, t) 12 . (2.5) 
l_O) R r 

The counter is situated far enough from the center 
of the potential to be considered in the asymptotic 
region. This is always so in practice, and it is neces­
sary if a theory of scattering depending on angles only 
is desired. Equation (2.5) involves 'lI(x, t) only at 
distances greater than R, so that the asymptotic form 
of 'lICx, t) may be used. This means that the asymp­
totic form ofl/;i(x), Eq. (1.2), may be substituted 
in Eq. (2.4). Before the substitution, it is convenient 
to replace the plane wave in Eq. (1.2) by its asymp­
totic form in spherical coordinates: 

e'k.x~(2'Jr/ikx)(0(n - nk)eikx 
- o(n + nk)e- ikr

). 

With these substitutions Eq. (2.4) becomes 

'lI(x, t) ~ I (~~! q,(k) exp [ - i(h
2
k

2
/2m) tJ 

(2.6) 

X [(eikz/x)g+(n - nk) - (e-ikx/x)g-(n + nk)], 

(2.7) 

where 

g+(n) == (21r/ik) o(n) + f:'(n), 

g-(n) == (27r/ik) o(n). 

(2.8) 

(2.9) 

The probability of Eq. (2.5) is evaluated in the limit 
of positive infinite. time. In that limit, only outgoing 
waves can contribute to 'lICx, t); the term containing 
g - may be neglected. Thus the desired probability 
finally becomes 

per) = lim r x2 dx f dn 
, ....... co R r 

ii 
d3k 1 

X (21r)! q,(k)g+(n - nk) X 

X exp i[kx - (hk2/2m)t]i
2 

(2.10) 

. 1'" f I d
3

k J dSk' * I = ~~ R dx r dn (27r)1 C21r)J q,(k)q, (k) 

X exp li[(k - k')x - (k' - k/~(ht/2m)]l 

X g+(n - nk)[g+(n - nk .)]*. 

As t becomes greater and greater, the exponential 
in Eq. (2.10) oscillates faster and faster as a function 
of k and k'. Eventually, it oscillates faster than any 
oscillation in the functions q,*(k') and q,(k), which 
are independent of x and t. At this stage it becomes 
permissible to evaluate the k and k' integrals in 
Eq. (2.10) by the "method of the stationary point". 
This method may be summarized by the formula 

I a(q) exp [ib(q)] dq 

~ exp [±li7r](21r/lbll(qo)J) la(qo) exp [ib(qo)], (2.11) 

where primes denote derivatives with respect to 
q, qo is the stationary point satisfying b'(qo) = 0 
(we assume a unique stationary point), and the 
± sign is the same as the sign b"(qo). Eq. (2.11) 
is an approximation which becomes better when the 
oscillation of exp [ib(q)] becomes faster compared 
to any oscillations in a(q). When this formula is 
applied in the limit of infinitely fast oscillation of 
the exponential, the results obtained are exact. 

When (2.11) is applied to the k and k' integrations 
of (2.10), the stationary points are 

ko = k~ = (l/h)m(x/t) , (2.12) 

and the probability becomes 

per) = ~~ £'" dx i dn I dnk I dnk , 2~~ (2:)3 

X (k m ~rq,(ko, nk)tP*(ko, nk') 

X g+(n - nk}[g+(n - n k ,)]*; (2.13) 

tP(k) is expressed in polar coordinates as tP(k, Ok). 
In place of x, it is convenient to adopt ko of Eq. 
(2.12) as a new variable of integration. This turns 
Eq. (2.13) into 

per) = lim (2
1 )21'" dko I dn I dnk I dnk, k~ ,-co 7r -Irm(R/l) 

X tP(ko, Ok)tP*(ko, Ok,)g+(O - nk)[g+(O - 01<,)J*' 

(2.14) 

The above expression depends on Rand t only in 
the lower limit of the ko integration. In the limit 
t....-+ co, this lower limit becomes 0 and independent 
of R. We may now choose R large enough to justify 
the use of the asymptotic form of w(x, t). The order 
of limits used here is essential. One may place the 
counter as far as one pleases, but, once it is placed, 
one must wait for the particle to reach and pass it; 
a counter, moving at the same time as the particle, 
may outrun its quarry. 
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3. SCATTERING OF A BEAM OF WAVE PACKETS 

The flux of a beam is defined as the number of 
particles crossing a unit area perpendicular to the 
direction of motion per unit time. For a beam of 
wave packets there is no unique direction of motion, 
all motions corresponding to all wave vectors in the 
support of f/J(x) are possible. We therefore arbitrarily 
choose some median direction to define the flux. 
The only property required of this direction is that 
no wave vector within the support of f/J(k) deviate 
from it by more than i1l". That such a choice is 
possible is the only limitation on the form of the 
wave packet (see the end of Sec. 1). The scattering 
cross section for a solid angle r is defined as the 
ratio of the number of particles detected in the solid 
angle r per unit of time to the flux of the beam. One 
always assumes that the various particles in the 
beam are far apart, and that their mutual interaction 
may be neglected. Under these circumstances, the 
time cancels out between the definitions of the 
scattering cross section and the flux. One may simply 
consider an ensemble of scattering experiments 
which differ from each other only in that the wave 
packets are displaced relative to each other in a 
direction perpendicular to the chosen-median direc­
tion of motion. The ensemble is arranged so that 
in a plane perpendicular to the chosen-median direc­
tion, the density of wave packets be one per unit 
of area. With this normalization, the total number 
of counts in the solid angle r equals the cross section 
u(r) for scattering into that solid angle. (The above 
considerations concern a uniform beam with un­
limited lateral extension. See Sec. 4 for a remark 
on beams with finite width and given cross section. 

The displacement of the wave packet of Eq. (2.1) 
by a space vector b amounts to replacing f/J(k) by 
f/J(k) exp [zk·bj. With this replacement, all one has 
to do to obtain the scattering cross section u(r), is 
to integrate p(r)d2b, the d2b integration ranges 
over a plane perpendicular to the chosen-median 
direction of motion. We choose our z-axis along the 
median direction of motion, so that d2b = dbzdb •. 

At this stage it is convenient to rewrite Eq. (2.14) 
in terms of two integrations on three-dimensional 
vectors k = (k, Qk) and k' = (k', Qk') 

per) = ~ f dQ f d3k f d3k' o(k - k')f/J(k)f/J*(k') 
(211") r 

X g+(Q - Qk)[g+(Q - Qk')]*' (3.1) 

k and k' have taken the place of ka in Eq. (2.14); 
they are kept equal by the o-function defined for 
variables between 0 and OJ. When, in the last ex-

pression, we replace f/J(k) by <t>(k) exp 2k· b and in­
tegrate dbxdb" we find 

u(r) = (2~)2 i dQ f d3
k f d3

k' o(k - k')f/JCk)f/J*(k') 

X g+(Q - Qk)[g+(Q - Qk')]* 

Now, 

X f db. db. exp i(k - k')·b 

= fr dQ f d3k f d3k' f/J(k)f/J*(k') 

X g+(Q - Qk)[g+(Q - Qk')]* 

X o(k - k') o(k. - k~) o(ky - k~). 

o(k - k') o(kx - k~) o(k. - k~) 

= o[(k: + k~ + k!)t - (k~2 + k~2 + k~2)!] 
X o(kx - kD o(k. - k~) 

(3.2) 

= [(k~ + k~ + k~)t /k.] o(k. - k~) o(k. - k~) o(k. - k~) 

= o3(k - k')/cos 8. (3.3) 

Strictly speaking, there ought to be an extra term 
in the last expression as a result from a possible 
coincidence of k and k' when k. = k;, k. = k~, and 
k. = -k~. We neglect this term, because, by our 
assumptions, the support of f/J(k) lies entirely in the 
halfspace of positive k •. The angle 8 in Eq. (3.3) 
is the angle between the vector k and the z-axis 
which has been assigned parallel to the chosen­
median direction of motion. 

Once Eq. (3.3) is substituted in Eq. (3.2), the 
k' integration may be performed explicitly so that 

u(r) = i dQ J d~ If/J(k) 12 

X Ig+(Q - Qk) 12 _L. (3.4) 
cos 8 

g+(Q - Qk) is given by Eq. (2.8). If the solid angle 
r includes directions corresponding to wave vectors 
within the support of f/J(k), u(r) becomes infinite. 
This is because an infinite number of unscattered 
particles, flow into the solid angle r. These cannot 
be separated from the particles scattered into this 
solid angle. This effect is well known for forward 
scattering. With a wave packet, every direction 
within the support of f/>(k), plays the role of the 
forward direction. For directions outside the support 
of f/>(k), however, the o-function in Eq. (2.8) may 
be neglected, 9 + (Q - Qk) may be replaced 
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by f~(n - Qk). Therefore, for these directions 

<r(r) = Ir dn J d~ Icf>(k) 12 

X If~(n - nk )12 ~(). (3.5) 
cos 

It is customary to express the cross section <r(r) 
as an integral over the differential cross section <T(n), 

.6) 

From Eqs. (3.5) and (3.6), the differential cross 
section <T(n) is identified as 

4. CONCLUSION 

For a wave packet sharply defined in momentum 
[so that f~(n - nk ) is practically constant as a 
function of k over the support of cf>(k)], one of the 
mean value theorems may be used to take 
If~(n - nkW outside the integral in Eq. (3.7). This 

reduces expression (3.7) to Eq. (1.3), the well-known 
result for wave packets with well-defined momentum. 

For wave packets spread in momentum space, 
(3.7) is nothing but a superposition of the differential 
cross sections of the different planewaves in the 
spectrum of the wave packet without any interference. 
The factor Ijcos () may be understood as a renor­
malization of the flux of the different planewaves. 
This renormalization is due to the fact that we have 
defined flux relative to some arbitrarily chosen aver­
age direction of motion, while the flux or a planewave 
is taken relative to the direction of its wave vector 
k. The angle between the two directions is (). But, 
whatever the interpretation of the formula (3.7), 
it is, as the derivation shows, exact. The only as­
sumption on the form of the wavepacket was that 
the various directions of motion involved deviate 
from the median direction by no more than !?r. 

The same approach could be extended to beams 
not uniformly extended in space. If these beams 
have lateral boundaries, or if their flux varies in 
the plane perpendicular to the median direction of 
motion, an appropriate weight function must be 
added t.o the integration d2b in Eq. (3.2). 
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T~e equations of motion for the general many-time causal Green's functions for a fermion system 
are Iterated and are shown not to lead to unlinked graphs, which is a general proof of the linked 
cluster theorem. An explicit expression is obtained for the perturbation expansion of an arbitrary 
Green's functions which is applied to the one- and two-particle Green's functions. By connecting 
lines systematically in a set of diagrams obtained from the equations of motion the usual topologically 
different linked graphs and rules are generated. ' 

I. INTRODUCTION 

RECENTLY, some of the dead wood in quantum­
electrodynamics has been cleared away by 

Dirac, l using the Heisenberg picture in which the 
divergent vacuum-to-vacuum graphs do not appear 
in the theory. The rules for obtaining mathematical 
contributions from the graphs are the same as the 
rules obtained in the Schrodinger picture. In the 
Schrodinger picture the time-development of states 
is responsible for the vacuum-to-vacuum graphs. In 
this paper, it will be shown that a similar situation 
occurs in the many-body problem. The usual method 
of developing perturbation theory for the Green's 
functions based on the interaction picture2 gives 
vacuum-to-vacuum, or unlinked, graphs. However, 
by using directly the equations of motion for the 
Green's functions in the Heisenberg picture, the 
unlinked terms do not appear. This fact was first 
shown by Klein and Prange3 through second order in 
the one-particle Green's function, but will be proved 
here to be true in all orders for the general Green's 
function. 

The usual many-body perturbation theory is de­
veloped for the Green's functions or propagators by 
first using the adiabatic theorem4 to put them in the 

* Sponsored in part by the King Gustaf VI Adolf's 70-
Years Fund for Swedish Culture, Knut and Alice Wallen­
berg's Foundation, and in part by the Aerospace Research 
Laboratories, OAR, through the European Office of Aerospace 
Research (oar) United States Air Force under Contract 
AF 61(052)-874. 

t Present address: Fysiske Laboratorium I, H. C. Orsted 
Instituttet, Universitetsparken 5, Copenhagen 0, Denmark. 

1 P. A. M. Dirac, Phys. Rev. 130, B684 (1965). 
2 See, e.g., P. Nozieres, Theory of Interacting Fermi Systems 

(W. A. Benjamin, Inc., New York, 1964), Chap. 5. T. D. 
Schultz, Quantum Field Theory and the Many-Body Problem 
(Gordon and Breach Science Publishers, Inc., New York, 
1964). A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physics 
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963), 
Chap. 2. 

a A. Klein and R. Prange, Phys. Rev. 112,994 (1958). 
'M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951), 

Appendix. 

interaction picture in which they are divided by the 
ground-state expectation value of the S-matrix. The 
Green's functions can then be expanded by using 
Wick's theorem5 which says that the time-ordered 
product is equal to the normal-ordered product with 
all possible pairings. However, some of these pairings 
lead to unlinked terms. The linked cluster theorem 6 

is then proved, which says that the unlinked terms 
cancel with the expectation value of the S-matrix 
in the denominator.7 Then it can finally be stated 
that the Green's function can be obtained by draw­
ing all topologically different linked graphs, and 
associating certain factors with each graph. This 
procedure is given in the upper part of Fig. 1. It 
has the disadvantage that the unphysical unlinked 
graphs are introduced as a consequence of Wick's 
theoremS and must be shown to cancel out. 

The method which will be developed here is an 
extension of the work by Klein and Prange3 on the 
Green's function equations of motion.o The equations 
of motion for the Green's function can be obtained 
essentially by differentiating and integrating, making 
use of the equation of motion for an operator in 

fi G. C. Wick, Phys. Rev. 80,268 (1950). 
6 The linked cluster theorem for the ground-state energy 

was proved up to fourth order by K. A. Brueckner, Phys. 
Rev. 100, 36 (1955). It was later proved in general by J. 
Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957); J. 
Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957); N. M. 
Hugenholtz, Physica 23, 481 (1957); and C. Bloch, Nuc!. 
Phys. 7, 451 (1958). 

7 The linked cluster theorem stated here is a generalization 
of the usual one for the ground-state energy, which follows 
from it as a corollary as shown in Ref. 3. The general form 
can be found in Nozieres (Ref. 2, p. 164), Schultz (Ref. 2, p. 
55), and Abrikosov et al. (Ref. 2, p. 71). 

8 Since Wick's theorem (Ref. 5) involves all possible 
pairings, some of them give rise to the unlinked graphs. 

9 The set of coupled equations of motion for the Green's 
functions were first obtained by T. Matsubara, Progr. 
Theoret. Phys. (Kyoto) 14, 351 (1955), for thermal Green's 
functions. The equation of motion method was also used by 
V. M. Galtiskii and A. B. Migdal, Zh. Eskperim. i Teor. Fiz. 
34, 139 (1958) [English trans!': Soviet Phys.-JETP 7, 96 
(1958)], and P. C. Martin and J. Schwinger, Phys. Rev. 115, 
1342 (1959). 
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FIG. 1. Alternative methods for developing perturbation 
theory for the Green's functions. The upper path is the 
traditional method. The lower path will be discussed in this 
paper. 

the Heisenberg picture, and taking the Fourier trans­
form. lo The Green's function equations of motion 
can be solved by iteration which can be shown to 
lead to perturbation theory in terms of linked graphs 
only. The unphysical unlinked graphs do not even 
enter the theory. This procedure is shown in the 
lower part of Fig. 1. 

In the next section, the Green's function equations 
of motion will be discussed. In Sec. III, the linked 
cluster theorem will be proved in all generality, and 
the formal perturbation expansion obtained. In 
order to illustrate the theory, the one-particle 
Green's function will be calculated explicitly to 
third order in Sec. IV. In Sec. V, the two-particle 
Green's function will be calculated to second order 
to show that the method is also applicable to higher­
particle Green's functions. For the sake of com­
pleteness, the derivation of the Green's function 
equations of motion is given in the Appendix. 

II. GREEN'S FUNCTION EQUATIONS 

The equations of motion satisfied by the Green's 
functions or propagators for a many-fermion system 
have been obtained in a number of papers,9 but some 
of the details will be examined here to emphasize 
the importance of boundary conditions and anti­
symmetrization. The structure of the equations is 
essential in proving the linked cluster theorem and 
in obtaining the rules for constructing the propa­
gators. A complete derivation is given in the Ap­
pendix. 

The Hamiltonian for a many-fermion system can 
be written in second quantization as 

H = L ela~al + i L }..(12 I V 134)a~a~aaa4' (2.1) 
1 1234 

where the numerals j = 1, 2, 3, 4 stand for the 
momentum k j and the spin rTj (up/down). The 

10 See, e.g., the procedure used in D. H. Kobe and W. B. 
Cheston, Ann. Phys. (N. Y.) 20, 279 (1962), to obtain the 
equations of motion for Bogoliubov quasi-particle propagators. 

kinetic energy of a particle with momentum kl is el, 
and the matrix elements of the potential energy V 
satisfy the following symmetry properties 

(121 V 134) = -(121 V 143) 

= -(21/ V /34) = (21/ V /43). (2.2) 

The parameter}.. is a strength parameter that can 
vary between zero and one. The creation operators 
a: and the annihilation operators al satisfy the usual 
fermion anticommutation relations 

[aI' a~]+ = 012, 

[aI' a2]+ = 0, (2.3) 

[a~, a~]+ = O. 

Instead of solving the Schrodinger equations by 
using ordinary perturbation theory, we will develop 
a field-theoretic-type perturbation theory2 based on 
the equations of motion9 satisfied by the Green's 
functions or propagators of the system. 

The general n particle, many-time, causal Green's 
function for a system with N particles is defined asH 

9 .. (1,2, ... ,2n) 

= i(NI Tlal~ ... ana:+! ... a2:1 IN), (2.4) 

where the expectation value is taken with respect 
to the exact ground state of the N particle system 
/N}. The annihilation operators and creation opera­
tors are all in the Heisenberg picture, which is de­
fined for an arbitrary operator A as 

A(t) = eiH1 Ae- iH' (2.5) 

with a different time associated with each subscript 
in Eq. (2.4). The time-ordering operator T orders 
the product of operators with the largest time on 
the left and the smallest time on the right, in de­
creasing order, with a plus (minus) sign for an even 
(odd) permutation of the original order. 

An alternative way of writing Eq. (2.4) which is 
helpful in obtaining the equation of motion isI2 

Sn(1,2, ... ,2n) 

= i L: (-I)Pp(NI AI'" A 2 .. IN) 
P 

X 0(1 - 2) ... O[(2n - 1) - 2n], (2.6) 

where the sum is over all permutations P of 2n 
integers, (-l)P is the sign of the permutation, and 

Ak = r ak if k :S n, (2.7) 

la; if k > n. 

11 See). e.g., A. Klein, in Lectures on the Many-Body Problem, 
E. R. L!aianiello, Ed. (Academic Press Inc., New York, 
1962), p. 279. 

u V. P. Gachok, Zh. Eksperim. i Teor. Fiz. 40, 879 (1961) 
[English transl.: Soviet Phys.-JETP 13, 616 (1961)]. 
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The function 0(1 - 2) == O(tl - t2 ) is the step func­
tion, which is one for positive argument and zero 
for negative argument. The spectral representation 
of the many-time causal Green's functionl3 can be 
obtained by taking the Fourier transform of 9 .. , 
but this will not be done here. 

The equation satisfied by 9 .. is usually obtained 
by differentiating Eq. (2.6) with respect to the time 
tl.11 However, this method singles out a specific time 
and the equations are not explicitly antisymmetric 
during the derivation. It also results in an ambi­
guity concerning the single-particle propagator. A 
method that eliminates these difficulties is to dif­
ferentiate and integrate successively.10 Thus, it can 
be shown that the operator 

ZI = _ie-;e,', i~ dti [(1 - CI)O(t l - tD 

is the unit operator if the boundary condition 

(1 - c,)[e""'·9 .. (l', 2, ... 2n)]t,' __ '" 

(2.8) 

+ cl[ei"I"~1n(l', 2, ... 2n)J"._w = 0 (2.9) 

is satisfied. Now, in general, the terms evaluated at 
plus and minus infinity will be zero in the sense of 
weak convergence,14 so that any C1 would be pos­
sible. However, in the case of noninteracting par­
ticles, and n = 1, we get 

if 

if 

where kF is the Fermi momentum. 

(2.lO) 

If the unit operator Z1 of Eq. (2.8) is applied to 
Eq. (2.6) for 9 .. , the antisymmetrizer applied, and 
the differentiation is performed using the equation 
of motion for an operator in the Heisenberg picture, 
the equation of motion can be obtained in terms of 
time. Then, if the general Fourier transform operator 

~2n = JOw ... f dt 1 ••• dt2n exp {i f: w_;t;} , 
-co 1-1 

(2.11) 

where 

W_; = { Wi 

L -Wi if j > n 

if j ~ n, (2.12) 

is applied, the equation satisfied by the Fourier 
transform of 9 .. is (see the Appendix) 

13 D. H. Kobe, Ann. Phys. (N. Y.) 19, 448 (1962). 
14 See, e.g., G. Temple, Proc. Roy. Soc. (London) A276, 149 

(1963). 

G,,(1,2, ... ,2n) 

= a'R L' (-lYGO(l, l')h(1'2'3'4') 

X Gn + I (3'4'2 ... n; 2'n + 1, ... 2n) 

- i(-lr-1
a 1nna"+1.2nG°(l, n + 1) 

X Gn - 1(2, ... ,n;n + 2, ... 2n). 

The vertex function is given by'" 

h(1234) = (211")-3!(12\ V \34) 

(2.13) 

X o(w 1 + W2 - W3 - w!) exp (-iw3t + iw22t). 

(2.14) 

The unperturbed single-particle Green's function 
GO(l, 2) is defined as 

ao(1,2) = -211" 1512 1(1 - C1)/(W1 - el + iO) 

+ C1/(WI - CI - iO) I, (2.15) 

and, in case of no interaction, C1 = n 1 given by 
Eq. (2.lO). The usual form of perturbation theory 
based on the adiabatic theorem2 uses C1 = nl even 
in the case of interaction. 

If the interaction is spherically symmetric, then 
this choice of the single-particle propagator is satis­
factory.16 However, if the interaction is not spheri­
cally symmetric, the adiabatic theorem is not satis­
fied17 and it is necessary to use an unperturbed 
ground state with the same Fermi surface as the 
interacting system. A self-consistent potential can 
be added and subtracted from the Hamiltonian, 
which changes the single-particle energies so that 
the unperturbed system has the same Fermi sur­
face. ls The free-particle propagatorl9 appropriate to 
this unperturbed system can easily be obtained by 
a modification of the single-particle energy in Eq. 
(2.8) and the appropriate choice of C1 in Eq. (2.15), 
Thus, the formulation here provides a way of trans­
cending the usual difficulties of perturbation theory 
associated with the adiabatic theorem. 

The antisymmetrizer in Eq. (2.13) is defined in 
the usual way as 

(2.16) 

where P is a permutation of the numbers 1, 2, ... , n, 
and (-1( is the sign of the permutation. The anti-

1. The exponential factors in Eq. (2.14) are needed to 
remove the ambiguity in loop diagraIllil. They arise naturally 
in the derivation of the equations of motion given in the 
Appendix. The limit E --+ 0 + is understood in Eq. (2.14). 

16 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960). 

17 W. Kohn and J. M. Luttinger, Phys. Rev. 118,41 (1960). 
18 A. Klein, Phys. Rev. Letters 4, 601 (1960). 
19 A. Klein, Phys. Rev. 121, 950 (1961). 
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=& = -S-i =B= 
FIG. 2. Graphical representation of the equation of motion 

for the Green's function Gn• 

symmetrizer Ci1l+1,2" operates on the n variables 
n + 1, n + 2, ... , 2n. The need for the antisym­
metrizer in the equations of motion was emphasized 
in an earlier paperlO in order to preserve the anti­
symmetry properties of the original Green's function 
with respect to interchange of the annihilation oper­
ators (or creation operators). It is essential in estab­
lishing the connection between the equations of 
motion method and the usual form of perturbation 
theory based on Wick's theorem.2 

Fig. 2 shows the graphical representation of Eq. 
(2.13) and, for the sake of clarity, is not antisym­
metrized. The correspondence between the mathe­
matical quantities and the graphs in Fig. 2 is shown 
in Fig. 3. In the next section, Eq. (2.13) will be 
iterated and shown not to lead to unlinked terms. 

m. ITERATION OF THE GREEN'S 
FUNCTION EQUATIONS 

The equation of motion for the Fourier transform 
of the many-time, causal Green's function for an 
N-particle system obtained in Eq. (2.13) can be 
written symbolically as 

G .. = F"G"+1 + J .. Gn- l , (3.1) 
where the operators F" and J" are defined by Eq. 
(2.13). From Fig. 2 it can be seen that the operator 
F" acts on a function having n + 1 lines and connects 
the top outgoing line with the second incoming line, 
after crossing the first incoming line. The remaining 
n incoming lines are then antisymmetrized. The 
operator J .. adds another line to a function having 
n - 1 lines, multiplies by n, and antisymmetrizes 
both the incoming and outgoing lines. 

It will now be shown by induction that G" satisfies 
an equation of the type 

G" = t"G"+1 + L", 
where tn is a linear operator given by 

(3.2) 

2~3 
1 4 

1--2 

t" = K"F". (3.3) 

h(1234) 

G'(i 2) 

FIG. 3. Correspondence 
between the graphical quan­
tities of Fig. 2 and the mathe­
matical quantities of Eq. 
(2.13). 

FIG. 4. The linked terms Ln. The 
nu.mbe~ of !ncoming lines and out- )' 
gOIng lines IS n. L 

The linear operator Kn is not yet specified, but a 
recursion relation will be found for it. The term L .. 
is a sum of terms each linked to the outside by n 
lines, and are either connected or disconnected as 
shown in Fig. 4. There are no unlinked graphs or 
ground-state components of the type shown in Fig. 5 
that contribute to it.20 It is assumed to have the 
form 

L" = K"J"L,,_I' (3.4) 

where L"-1 has a similar definition, J" is given by 
Eq. (3.1) and (2.13), and K" is the as yet unknown 
operator. However, from Eq. (3.4), it is seen that K" 
must not generate unlinked graphs for the assump­
tion to be consistent. Now, we will prove by induc­
tion that Eqs. (3.2), (3.3), and (3.4) are indeed valid. 
In the process we will also discover a recursion rela­
tion for Kn. 

For n = 1 Eq. (3.2) becomes 

GI = tlG2 + L 1 • (3.5) 

However, for n = 1, Eq. (3.1) can be written 

GI = FI G2 + J 1i, (3.6) 

which is the same form as Eq. (3.5), since J]i is a 
term linked to the outside with no unlinked part. 
From Eq. (3.3), we have 

tl = KIFI , 

and, from Eq. (3.4), we have 

Ll = KIJILo. 

(3.7) 

(3.8) 

Therefore, by comparing Eqs. (3.5) and (3.6), we 
have 

(3.9) 

(a) (b) (e) (d) 

Fig. 5. Examples of unlinked graphs. Graph d is disconnected 
while the others are connected. 

20 The definitions of linked and unlinked, and connected 
and disconnected diagrams given here are the same as N ozieres 
(Ref. 2). Linked diagrams are "linked" to the "outside" by 
external lines, while unlinked diagrams have no external 
lines. Connected diagrams are those that cannot be divided 
into two or more parts without cutting a line. Diagrams that 
can be so divided are called disconnected. 
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and 

Lo = i. (3.10) 

The assumption of the form of equations given in 
Eqs. (3.2), (3.3), and (3.4) is thus consistent for 
n = 1, if the values of Kl and Lo in Eqs. (3.9) and 
(3.10) are used. 

The next step in the induction proof is to show 
that Eqs. (3.2), (3.3), and (3.4) are valid for n + l. 
For n + 1, Eq. (3.1) gives 

(3.11) 

If Eq. (3.2), which is assumed to be true, is sub­
stituted into Eq. (3.11), the result is 

Gn +1 = F"+1G .. +2 + J"+IL ,, + J,,+d .. G"+1. 

Equation (3.12) can be iterated once to give 

G,,+1 = [1 + J .. +d .. ][F"+IG"+2 + J,,+1L,,] 

+ (J .. +dn)2G"+1. 

(3.12) 

(3.13) 

If the equation is iterated an infinite number of 
times, then the result has the form 

G"+1 = i"+IG"+2 + Ln+1' (3.14) 

where 

i,,+1 = K,,+IF"+1 (3.15) 

and 

L"+l = Kn+1J"+lL". (3.16) 

In order to write Eqs. (3.15) and (3.16) in this form, 
the function K,,+l must be 

K"+1 = f (J,,+d,,)k == [1 - J .. + d .. r 1 
, (3.17) 

k-O 

where the inverse operator is defined by the geo­
metrical series. Since i .. is given by Eq. (3.3), we 
obtain 

K"+1 = II - In+1K .. F .. rl (3.18) 

as a recursion relation that K .. must satisfy in order 
for Eqs. (3.2), (3.3), and (3.4) to be valid for all 
integers n. Since the J's and F's are known for all n 
and Eq. (3.9) shows that K1 = 1, we can obtain all 
the K's by using Eq. (3.18). If K .. , acting on J .. L"_lI 
does not generate any ground-state components or 
unlinked graphs in Eq. (3.4), then K .. +l will not 
generate any unlinked graphs when acting on J .. +1L" 
because of Eq. (3.18) which relates Kn+l and K". 

C~ Fig. 6. A graph that would giv~ un­
linked terms, but does not contribute 

no' to G". 

Therefore Eq. (3.2) has been established for all 
integers n by mathematical induction. 

Equation (3.2) can itself be iterated by substitut­
ing Eq. (3.14) into it for GU1, and continuing the 
iteration by using higher-order equations, which 
gives 

m-l m-l i-I 

G1I = II i,,+kGn+m + 1: II i"HL,,+;, (3.19) 
k-O ;-0 k-O 

where the products are to be expanded to the right. 
The product in the last term is to be taken as unity 
when j = o. If the limit is now taken as m ~ CD, the 
first term will contain an infinite number of I's and 
hence V's, so it will not contribute if it is assumed 
that the perturbation series converges. Hence, the 
G" representation 

(3.20) 

is obtained. Equation (3.20) still contains L's and 
I's, but it can be rewritten with the help of Eqs. (3.3) 
and (3.4) to give 

co i-I 

G" = 1: II [K"HF"H] 
i-O k-O 

,,+;-1 

X II [K,,+HJ,,+;-di. (3.21) 
1-0 

Equation (3.21) is the explicit solution for the prop­
agator Gn, since the F's and J's are all known, and 
the K's can be obtained from Eq. (3.18). Thus, G" can 
be evaluated to any finite order in perturbation the­
ory. The unlinked terms of ground-state components, 
if there are any, must be contained in the Gn+m in 
Eq. (3.19), because the I's, acting on an L, do not 
produce unlinked terms, since neither the F nor 
the K produces unlinked terms. Thus, the unlinked 
terms can only occur in infinite order if the limit 
m ~ CD is taken, and will be zero if the series con­
verges. Therefore, the n-particle Green's function 
G" is just a sum of linked terms, which is a statement 
of the linked cluster theorem. It has now been proved 
to all orders for an arbitrary Green's function from 
the equations of motion. 

The reason that the unlinked graphs do not occur 
in the equations of motion method is that there are 
no graphs of the type shown in Fig. 6 occurring in 
Fig. 2. Thus, the allowable ways of connecting the 
outgoing lines with the incoming lines is restricted 
in such a way that it is not possible for a ground­
state component or unlinked term to be split off. 
However in Wick's theorem, all possible pairings 
are allow~d, and some of these cause the unphysical 
unlinked graphs to appear. 
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The ground-state energy can be calculated by the 
equations given by Galitskii and Migdal9 or by 
Klein and Prange.3 The graphical illustration of the 
ground-state energy is given in Fig. 7. If the expan­
sion for the two-particle Green's function were to 
be substituted into it, a sum of unlinked connected 
graphs would be obtained. This statement is some­
times called the linked cluster theorem.6 However, 
it follows as a corollary of the more general theorem 
proved above.21 

IV. SINGLE-PARTICLE PROPAGATOR 

In order to illustrate the previous formalism, the 
single-particle propagator will be calculated to third 
order. Because of the Dyson equation, the self­
energy can also be obtained to the same order by 
considering just the irreducible self-energy diagrams 
(contributions to the single-particle propagator that 
cannot be divided into two parts by cutting just 
one line). 

The traditional approach based on Wick's theorem 
involves drawing all topologically different graphs, 
and associating certain factors with each graph. In 
theory, this approach has reduced the problem as 
far as possible, but, in practice, it is difficult to draw 
all topologically different graphs and associate the 
proper factors with each, especially in a high order. 
The approach here, while giving the same result, 
presents a way of generating all the topologically 
different graphs with the correct factors. 

To calculate G1 we can use Eq. (3.21) 
co i-I i 

G1 = .L: II [Kk + IFk+l] II [Kl+;-IJl+;-/]i. (4.1) 
;-0 k-O 1-0 

This expression can be expanded, and the first 
several terms are 

GI = iJ I + iFIK2J2JI 
+ iFIK2F2KaJaK2J2JI 
+ iFIK2F2KaFaK4J4KaJ aK2J 2 J 1 

+ iFIK2F2KaFaK4F4KsJsK4J4KaJaK2J2JI + .. , , 
(4.2) 

where use has already been made of Eq. (3.9) for 
K1• In Eq. (4.2), the functions K2, Ka, K4 , ••• occur, 
and are given by Eq. (3.18) as 

'1 There have been many treatments of the linked cluster 
theorem from other points of view and in other contexts. A 
good review of the linked cluster theorem has been given by 
B. H. Brandow (unpublished). For other references to the 
subject see C. Bloch and C. De Dominicis, Nucl. Phys. 7, 
459 (1958); F. Coester, ibid. 7, 421 (1958); C. Bloch and J. 
Horowitz, ib£d. 8, 91 (1958); T. Morita, Progr. Theoret. Phys. 
(Kyoto) 29, 351 (1963); and H. Kiimmel, in Lectures on the 
Many-Body Problem, E. R. Caianiello, Ed. (Academic Press 
Inc., New York, 1962), p. 265. 

FIG. 7. The shift in the ground-state 
energy. 

Kl = 1, 

K2 = 1 + J2F1 + J2FJ2Fl 

+ J2FIJ2FIJ2Fl + 
Ka = 1 + JaK2F2 

+ JaK2F2JaK2F2 + 
K4 = 1 + J4KaFa + .. , . 

(a) 

(b) (4.3) 

(c) 

(d) 

Substituting Eq. (4.3) into Eq. (4.2), grouping terms 
according to order, and considering terms through 
fourth order, we obtain 

G1 = GO (0) 

+ iF1J2J1 (1) 

+ i{FIF2JaJ2Jl (2a) 

+ F1J2F1J2Jtl (2b) 

+ i{FIF2FaJ4JaJ2Jl (3a) 

+ FIF2JaF2JaJ2Jl (3b) 

+ FIJ2FIF2JaJ2Jl (3 c) 

+ FIJ2FIJ2FIJ2Jl (3d) 

+ FIF2JaJ2FIJ2Jl1 (3 e) 

+ i(FIF2FaFJslJaJ2Jl (4a) 

+ FIF2FaJ4JaJ2FIJ2Jl (4b) 

+ FIF2FaJ4JaF2JaJ2Jl (4 c) 

+ FIF2FaJ4FaJ4JaJ2Jl e4d) 

+ FIF2JaF2FaJ4JaJ2JI (4 e) 

+ FIJ2FIF2FaJ4JaJ2Jl (4f) 

+ FIF2JaF2JaJ2FIJ2Jl (4g) 

+ FIJ2FIF2JaJ2FIJ2JI (4h) 

+ FIJ2FIF2JaF2JaJ2Jl (4i) 

+ FIF2JaJ2FIF2JaJ2Jl (4j) 

+ FIF2JaJ2FIJ2FIJ2Jl (4k) 

+ FIF2JaF2JaF2JaJ2Jl (41) 

+ FIJ2FIJ2FIF2JaJ2Jl (4m) 

+ FIJ2FIJ2FIJ2FIJ2JIl (4n) 

+ .... (4.4) 
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Equation (4.4) can be written in a more concise way 

G1 = GO 
ro 

+ iF1 L [distinct permutations of nF's 
n=O 

and nJ's]J2J 1 • (4.5) 

After the distinct permutations have been made, it 
is necessary to add subscripts indicating the number 
of outgoing lines after the application of the operator 
For J. The number of outgoing lines or incoming 
lines in intermediate steps must always be one or 
more, otherwise the term is zero. For example, in 
third ordpr, a tprm of the type 

FF JFJ J J = F1F2J3F2J3J2Jl (4.6) 

is a contribution, but not a term of the type 

FJJFFJJ = Ft.!2J1FoFt.!2J1 = 0, (4.7) 

where the Greek letters are integers going from zero 
to infinity. Because of Eq. (4.8), there can be inser­
tions between the operators of the basic structure 
of the type 

{J[J(J ... F) ... (J ... F)FJ 

X [J ... F]Fl{J .. , FI .,. {J '" FI, (4.9) 

where the number of J's and F's is the same within 
parentheses. The dots in Eq. (4.9) represent possible 
insertions of the same kind. The only restriction on 

o 

~ (~~-_C21-~-
2 

~~ 
1 "Cf,':l.:=' '21 __ 3' __ 

(al (b) 

3Wl~"e lL~~ __ ~ -4' 

- --
(a) (b) 

because Fo must be zero. Thus, all the terms in Eq. 
(4.5) with nonpositive subscripts, e.g., Fo, J o, F -1, 
J -1, ... must be zero. 

After the subscripts have been added in Eq. (4.5), 
the terms remaining are those that come from the 
expansion of Eq. (4.2). An arbitrary term from Eq. 
(4.5) can be classified according to the order p and 
the highest value of the subscript on F, say k. This 
term would then come from the term with the basic 
structure Fl ... Fk J H1 •• , J 1 in Eq. (4.2) since, 
if an F k exists, there must be k + 1 lines on which 
it can act. Since the term is a contribution to G17 

the number of lines must be decreased until there 
is only one. In Eq. (4.2), there are the appropriate 
K's inserted between all of the operators. Because 
of the recursion relation in Eq. (3.18), we can iterate 
it and obtain 

(4.8) 

the insertions is that the subscripts must be positive 
and the total number of F's in the term must be p. 
Any arbitrary term from Eq. (4.5) in pth-order has 
p F's and (p + 1) J's. In the basic structure, there 
are k F's and (k + 1) J's, so there are (p - k) F's 
and the same number of JIS which can be distributed 
between the operators in the basic structure. In 
order for k to be the maximum subscript on F, 
these (p - k) F's and J's must be distributed in the 
way shown in Eq. (4.9). Conversely, an arbitrary 
term in the expanded form of Eq. (4.2) corresponds 

l~21,q;02 2' "---_ _____ 1!_ 

(el 

FIG. 8. Diagrams for 
the single-particle propa­
gator obtained from the 
Green's function equa­
tions of motion. 

~1~~~ 2,U~--2'- 2 
----21-

@~ 
Cd) (e) 
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FIG. 9. Equivalence of the lines leaving a vertex. 

to a definite contribution to Eq. (4.5). Thus Eq. 
(4.5) has been justified. 

The terms in Eq. (4.4) can be represented by 
graphs as shown in Fig. 8 through third order. In 
order to write down the diagram for the corre­
sponding terms in Eq. (4.4), it is only necessary to 
use the fact that I n means to add a single line to 
the n - 1 lines present, antisymmetrize the in­
coming and outgoing lines, and multiply by n. The 
process of antisymmetrization means to connect the 
lines up in all possible ways with a minus (plus) 
sign for an odd (even) permutation, and then divide 
by n!. The operation Fn is applied to n + 1 lines and 
means to connect the top outgoing line with the 
second incoming line, after crossing the first in­
coming line. Then the n incoming lines are anti­
symmetrized. Since, from Eq. (4.5), the terms of 
arbitrary order can be obtained in terms of the 
F's and J's, the above rules for constructing the 
diagrams can be used in a systematic manner. In 
Fig. 8 the graphs for the corresponding terms in 
Eq. (4.4) are shown to third order. 

Fig. 8 can be simplified considerably by noting 
that the lines coming out from a vertex are equiva­
lent. If they are exchanged, a minus sign is needed, 
because the matrix element at the vertex is anti­
symmetric. The same is true for the two incoming 
lines. The situation is illustrated in Fig. 9. 

The diagrams in Fig. 8 can be simplified further 

o 

2 

~ c; ~---

Cd) 

~ ~;=::--
(h) 

by eliminating the repeated antisymmetrizations. If 
a group of n - 1 lines is antisymmetrized, and 
another line is added and all n are antisymmetrized, 
the first antisymmetrization is not needed. This 
situation is shown graphically in Fig. 10 for four 
lines. 

Therefore, using the rules illustrated in Figs. 9 
and 10, Fig. 8 can be simplified as shown in Fig. 11. 
The problem now is to connect the lines in all pos­
sible ways with a minus (plus) sign for an odd (even) 
permutation. The connection can be made graphi­
cally for the first- and second-order graphs, but 
becomes more cumbersome in the case of third 
order. The problem of connection can be simplified 
by using the permutation group and the fact that 
two lines coming out from a vertex are equivalent. 

For the first-order diagram, the only group of 
permutations which must be considered is the sym­
metric group 8 2 = {e, (12)}. However, (12) gives 
the same graph as e if one of the lines going out 
from the vertex is crossed over the other one. This 
process gives a factor (-1) which combines with 
the (-1) due to (12) being an odd permutation. 
Therefore, it is only necessary to consider e and 
multiply the graph by a factor 2 as is done in 
Fig. 12 for first order, 

The second-order term can be treated similarly. 
It is the sympletric group 

8 a = {e, (12), (13), (23), (132), (123) I 

---
FIG. 10. Example of the , 

redundancy of repeated anti- = 3!=& = 
symmetrizations, 

-,­
lJ 

FIG. 11. Reduced diagrams 
for the single-particle prop­
agator obtained from the 
Green's functions equations 
of motion. 

" c .. © 22-22 
3' 3' 3 3-33 

3 t. 
t2'~ 
~---2 2 13 

3' 3' 3 3 3!'3! (~ 
'4' 44--

(a) 

(~ 
44-

(d) 

'4' 44--

l 
'3! 

(b) 

(e) 

(e) 
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FIG. 12. Topologically different graplJ-s for the sill:gle-particle 
propagator obtained frOID the diagrams of Fig. 11. 

which must be considered. However, it is only the 
left co sets of the subgroup S2 which give different 
diagrams. The left cosets of S2 are 2a = Ie, (12)}, 
2b = 1(23), (132)}, and -2c = 1(13), (123)} which 
correspond to the graphs in Fig. 12 (2), respec­
tively. Since each of the elements in a coset gi:es 
the same graph, it is multiplied by two. After makmg 
a permutation, the graph is multiplied by the sign 
of the permutation and then put in the form shown 
in Fig. 12 by crossing the lines coming out or going 
in to each vertex, if necessary. There is a factor of 
(-1) for each crossover, because the matrix ~leme~t 
is antisymmetric. Therefore, the graph c m FIg. 
12 (2) is multiplied by (-1), since the permutation 
(13) is odd and two crossovers are necessary. 

The graph in Fig. 11 (2a) corresponds to the full 
symmetric group Sa and therefore contributes 
2a + 2b - 2c. The graph in Fig. 11 (2b) corresponds 
to the product 

{e, (23) I . (e, (12) I 
= Ie, (12), (23), (132) 1 = 2a + 2b. 

Thus, the total second-order contribution is 22a + 
22b - 2c as shown in Fig. 12 (2). 

The third-order term in Fig. 11 is more com­
plicated, because the graphs in Fig. 11 [3(a, ~, e)] 
must also be connected with respect to the prImed 
numbers (2', 3',4') as well as the unprimed numb~~s 
(1, 2, 3, 4). However, the connection can be faCIh­
tated by considering the left co sets of the subgroup 

{e, (12)} and the subgroup {e', (2'3') I. Then each 
coset corresponds to a graph, and the number of 
permutations that must be considered is reduced 
from 144 by a factor of four to 36. When the con­
nections are made in this manner, taking into ac­
count the proper sign, the graphs shown in Fig. 
12 (3) are obtained. 

One of the main advantages of this method over 
the Wick's theorem method is that there is no 
danger of leaving out a topologically different graph. 
In fact, all the topologically different linked graphs 
are obtained from the diagrams of the type shown 
in Fig. lI(a), since the other diagrams just represent 
restrictions on the ways of connecting the lines. 
The other diagrams are of course essential for deter­
mining the factors associated with topologically dif­
ferent graphs, but will not generate any new ones. 

The graphs shown in Fig. 12 are Hugenholtz 
graphs6

, since the interaction is represented by a 
vertex instead of a dotted line. In order to obtain 
Goldstone-type6 graphs, it is only necessary to sub­
stitute Fig. 13 into Fig. 12 for the vertices. The first 
figure on the right side of Fig. 13 is the direct term 
and the second term is the exchange term. The 
advantage of Hugenholtz vertices over Goldstone 
vertices is apparent when one considers that in first 
order there is just one Hugenholtz graph versus two 
Goldstone graphs, in second order it is 3 vs 10, and 
in third order it is 12 vs 74. Klein and Prange,3 
who used Goldstone vertices, give the ten different 
linked second-order graphs.22 In Fig. 12 there are 
no unlinked graphs, which illustrates the linked 
cluster theorem proved in the last section. 

The self-energy function is extremely important 
when calculating the energy shift in the single­
particle (hole) energies.2 It can also be used in con­
nection with the single-particle propagator to cal­
culate the ground-state energy.3 The terms in Fig. 
12 (1), (2a, c), (3a,-g) are irreducible gra~hs, and 
therefore contribute to the self-energy functIOn. 

The rules for the mathematical contribution from 
the graphs in Fig. 12 can be obtained from Eqs. 
(2.13), (2.14), and (2.15), where the operators F" 
and J"of Eq. (3.1) are defined. In Eq. (4.2), for every 
Fk there is a J k + 1• Since both have a factor (-1)\ 
this factor does not contribute. The vertex is given 
by the h factor in Eq. (2.14), and the lines are given 
by (f in Eq. (2.15). In addition, there is a factor 
-i for each J appearing in the term. The factor 

22 Schultz (Ref. 2, p. 53) gives ten different Gol~tone 
linked graphs with unlinked parts in second order. Abrikosov 
et al. also give ten different Goldstone second-order graphs 
(Ref. 2, p. 73) and three different Hugenholtz second-order 
graphs (Ref. 2, p. 76). 



                                                                                                                                    

MANY-FERMION SYSTEM 1815 

obtained from connecting the diagrams of Fig. 11 
together is 2,,-m(-1)"+I, where p is the order, m is 
the number of pairs of equivalent lines, and f is 
the number of closed loops. This factor can be seen 
to be valid through third order by looking at Fig. 12. 
It will be justified to all orders later. 

The graph in Fig. 12 (1) is considered to be a 
closed loop, so it is clear that the graphs in Fig. 
12 [2(a, b)] have two closed loops and the graphs in 
Fig. 12 [3(a, b, h, i, 1)] have three closed loops. The 
graph of Fig. 12 (2c) is considered also to have just 
one closed loop, since there is only one distinct 
path leaving one vertex and returning to it. The 
closed loop can be seen even more clearly, if the 
direct part of the Goldstone interaction in Fig. 13 
is substituted for the Hugenholtz vertices. If there 
is any doubt about the number of closed loops in 
a Hugenholtz graph, the direct part of the Goldstone 
interaction can always be substituted for the vertex 
and the actual number of closed loops can be easily 
counted. This method shows that the number of 
closed loops in Figs. 12 [3(c, e, f, j, k)] is two, and the 
number of closed loops in Figs. 12 [3(d, g)] is one. 

A pair of equivalent lines are two lines that can 
be interchanged without changing the appearance 
of the graph. Thus, in Fig. 12 (2c), the two bottom 
lines form a pair of equivalent lines. Likewise, the 
graphs in Figs. 12 [3(c, f, j, k)] have a pair of equiv­
alent lines, and the graph of Fig. 12 (3g) has two 
pairs. All the others have no equivalent lines. 

The rules for obtaining the one-particle Green's 
function can thus be stated in the following way: 

(1) Draw all topologically different linked graphs 
Ii .. ving one line in and one line out with arrows. 

(2) For each line 1 2 associate a factor 
~--

where 

01 = {+o, 
-0, 

if 

if 

.t . ·3 

(3) For ea,h vertex X associate 

I ~ 
a factor 

(12\ V \34) 

X I)(CIl1 + CIl2 - CIla - CIl4) exp (-i<.JaE + i<.J22E). 

(4) Integrate (sum) over the internal frequencies 
(momenta, spin). 

x - 1. 
2 -~X 

FIG. 13. The connection between the Hugenholtz interaction 
vertex and the Goldstone interaction. 

(;") :Multiply by an overall factor 

[( - 27r)2P +1] [(27r)-apT P] [2P- m
( _1)"+/][( -ir1]i 

= (-27r) (i/27r)"( -1)/2-", 

where f is the number of closed loops and Tn is the 
number of pairs of equivalent lines. 

The overall factor in rule (5) is composed of various 
parts. The first square bracket with (_27r)2P

+1 is due 
to the (2p + 1) OO's since there are p F's and 
(p + 1) J's. The next square bracket comes from the 
vertex function in Eq. (2.14), which gives the factor 
[(27r)-a2-1]p times. The third square bracket comes 
from the ways of connecting the diagrams of Fig. 
11 and will be justified below. The (_i)"+1 comes 
from the (p + 1) J's and the i is from the Lo. 

These rules are essentially the same as the ones 
stated by Nozieres and by Abrikosov, et al.2a It is 
not necessary to add another rule to take graphs 
with closed loops of the type shown in Fig. 12 (1) 
into account, since the exponential factors in rule 
(3) are equivalent to saying that the integration 
must be in the upper half plane. This exponential 
factor is due to the ordering of the operators in the 
Heisenberg equation of motion (see the Appendix). 

From the equation of motion method, all these 
rules have been deduced to all orders except for 
the factor 2,,-m( -1)"+1 in rule (5). This factor has 
been shown to be valid through third order, and will 
now be shown to be valid to arbitrary order. 

The sign factor (-1),,+1 will now be established 
by induction. By examining the (p + 1)st-order 
diagrams of the type shown in Fig. 11 (a), it can 
be seen that the graphs with a closed loop of the 
type shown in Fig. 12 (1) will have the same sign 
as the corresponding pth-order graph without the 
loop. If 1 ~ 1, we get a closed loop without a sign 
change. If k ~ k - 1 for k = 2, 3, ... , p + 1 and 
k' ~ k', k" ~ k", ... then a closed loop will be 
formed if one of the lines going out from the vertex 
is crossed over the other, as shown in Fig. 14(a). 
This crossover gives a factor (-1) which combines 
with the (-1) obtained from the transposition 
k ~ k - 1 to give unity. Other ways of obtaining 
the closed loops of Fig. 12 (1) are equivalent to 
this way. Thus, in (p + l)st-order, the sign factor is 

~ The rules are given by Nozieres in Ref. 2, p. 185, and by 
Abnkosov et al. (Ref. 2, p. 76). See also Ref. 3. 
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FIG. 14. Diagrams used for establishing the rule for the 
(-1)1'+1 sign factor. 

(_1)1'+1 = (_1)(1'+1)+(1+1) which is correct because 
there is one more closed loop. 

Before the closed loop of the type shown in Fig. 
12 (2c) is considered, the types of scattering that 
can be obtained will be first considered. The diagram 
shown in Fig. 14(b) can be regarded as a subdia­
gram of a larger diagram, and it can be rearranged 
as a scattering between particle and hole as shown 
on the right side. There is a minus sign because one 
crosSOver is necessary and the original permutation 
is k ~ k, k' ~ k', .... The diagram of Fig. 14(c) 
can also occur as part of a larger diagram and can 
be rearranged to give scattering between two parti­
cles with a minus sign, because one crossover is neces­
sary and the original permutation is k ~ (k - 2), 
k' ~ k', ... . Thus, when these scatterings are 
added to a pth-order graph, no new closed loops 
are considered to be formed and the sign of the new 
graph is (-1) 1)"+1 = (-1) (P+ll+J. The graph of 
Fig. 12 (3d) is interpreted as having only one closed 
loop, as can be seen by drawing the corresponding 
Goldstone graph. 

The closed loop of the type shown in Fig. 12 (2c) 
can be obtained by combining a scattering of the 
type shown in Fig. 14(c) with the closed loop of 
Fig. 12 (1) as shown in Fig. 14(d). The sign of the 
new graph will be (-1)(-1)"+1 = (-I)(P+l)+I,since 
one closed loop will be destroyed and another one 
created. Thus, the number of closed loops will be 

the same and the correct sign will be obtained. 
Therefore, the sign (_ly+f has been established by 
induction. 

The factor 21'+'" used in obtaining rule (5) can 
also be established by induction. It is true for zeroth, 
first, second, and third orders, and will be assumed 
true for the pth-order. If we have the pth-order 
terms in Eq. (4.5), then the (p + l)st-order terms 
can be obtained by making the replacement 

J k '" J 1 ~ FJk+Jk ... J 1 

+ JkFk-lJkJk-l ... J 1 + 
+ J k ••• Jk-pFk-p-1Jk_1' ... J 1 

+ ... + J k .,. J 2FJ2J I (4.10) 

in the last uninterrupted series of J's in each term. 
This procedure can be seen to be valid for zeroth, 
first, second, and third order from Eq. (4.4). If an 
arbitrary (p + l)st-order term is considered, and 
the first F J term encountered in going from the 
right to the left is removed, the result would be one 
of the pth-order terms. Thus, all the (p + l)st-

-+ ", + pl!»l) ...• 
k!2. (P_I)! 

+ 

2 k 
-k-'-

,(1<-1) - -2-"-

k' 
+ ~ 

_ -D... _ 

+ 2- ....0..... + .,' + 2 

FIG, 1,j. Insertion made to obtain the next 
higher-order diagrams. 
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order terms are generated in this way. Equation (a) 

(4.10) is shown diagrammatically in Fig. 15. If the 
lines are connected as indicated, the result shown (bl 

--_ ... -
2 P- m 

o 
2 p+l_ m 

in the last line is obtained. It says that, in the dia­
grams of Fig. 11, the lines after the last interaction 
on the right are replaced with loops of the type of 
Fig. 12 (1) in all possible ways with a factor 2.' and 
are also allowed to scatter with each other m all 
possible ways. The way in which these insertions 
are made in the pth-order diagrams of the type of 
Fig. 11 guarantees that the graphs in (p + l)st­
order will have the correct factors. If a loop of the 
type in Fig. 12 (1) is inserted into a pth-order graph 
with a factor 2,,-m the resulting graph will have a 
factor 2(,,+1)-m as shown in Fig. 16(a). If the two 
lines coming out from a vertex in a pth-order graph 
are allowed to scatter, the resulting graph will have 
the factor 2,,-m = 2(,,+1>-(m+1>, because one more 
pair of equivalent lines has been formed as shown 
in Fig. 16(b). If a pair of equivalent lines is de­
stroyed by the insertion of a loop in each of the 
lines as shown in Fig. 16(c), the resulting factor will 
be 2·2·2,,-m = 2(1)+1>-(m-l> because the resulting 
graph will have one less pair of equivalent lines. It 
is also possible for a pair of equivalent lines to be 
destroyed in the way shown in Fig. 16(d). The 
same (p + l)st-order graph can be obtained by 
allowing the top line to scatter with the middle 
line or the bottom line in the first graph on the left 
side. It can also be obtained by allowing the two 
closed loops in the second graph on the left side to 
scatter with each other. When these contributions 
are combined, the result is the (p + l)st-order 

h . h h f t 2(1)+1>-m grap WIt t e proper ac or . 
In order to complete the induction proof, it is 

necessary to show that the restrictions in the ways 
of connecting the lines of the diagrams in Fig. 11 
will guarantee that no (p + l)st-order graph will 
be produced twice, by different insertions in dif­
ferent pth-order graphs. This hypothesis has been 
verified up to third order, but the general proof has 
not been carried out. The previous discussion has, 
however, given some insight into the problem .and 
made the factor 2,,-m in rule (5) reasonable. Smce 
this factor is obtained by the Wick's theorem 
method,2 the hypothesis must be true. 

The equation of motion method is an alternative 
way of obtaining the single particle Green's function. 
Nozieres2 states that the principal difficulties in 
the Wick's theorem approach are not to leave 
out graphs and to calculate the factor properly. 
Abrikosov et al. state that, for higher-order terms, 
it is best not to rely on the rules for drawing the 

(e) 

(dl 

.. ::x=x= .... 
" p-rn p+l-(m ... O·· 

2 " 1 

. =><: .. 

.. ' ". 

2 p-m 

l P•t -(m-t) 

... ~ ... + o 0 

.. + m 
2 P - m 

2 p+l -m 

FIG. 16. Diagrams used in establishing the rule 
for the 2r'" factor. 

graphs but to return to the expression for the Gr~en's 
function in the interaction picture, and use WIck's 

nl 'd 2~ theorem directly with the graphs 0 y as gUl es. 
The method based on the equations of motion has 
the advantage over the Wick's theorem method in 
that explicit diagrams of the type shown in Fig. 11 
can be drawn to generate all topologically different 
linked graphs with the proper factors. The unlinked 
graphs are avoided, which is an advantage since 
they are not physical. In the next section, it will 
be shown that the method is also applicable to the 
two-particle Green's function. 

V. THE TWO-PARTICLE GREEN'S FUNCTION 

The two-particle Green's function is very im­
portant in determining collective excitations,2 so it 
is of interest to see if it can be calculated from the 
method presented here. Eq. (3.21) for G2 gives the 
expansion 

G2 = K 2J 2J l i 

+ K2F2KaJaK2J2Jli 

+ K2F2KaFaK4J4KaJaK2J2Jli 

+ K2F2KaFaK4F4KsJsK4J4KaJaK2J2Jli 

+ K2F2KaFaK4F4KsF$6J6 

X K5JsKJ4KaJaK2J2Jli + 
24 See Abrikosov et al. (Ref. 2, p. 76, footnote 12). 

(5.1) 
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Order 
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(a) (b) 
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FIG. 17. The diagrams for the two-particle Green's function 
obtained from the equations of motion. 

When the expansions for K 2 , K a, K 4, ••• in Eq. 
(4.3) are substituted into Eq. (5.1), and when the 
terms are collected according to order, the result is 

G2 = J 2J 1i + {J2FI + F2J alJ2J 1i 

+ {J2F.J2FI + J 2F1F2Ja + F2 JaF2 J a 

+ F2 J aJ 2FI + F2FaJ4JalJ2Jli 

+ .... (5.2) 

Eq. (5.2) can be written in a more complete and 
concise form as 

~ 

G2 = L [distinct permutations of nF' s 
.. -0 

(5.3) 

if the terms in the expansion are subscripted ac­
cording to the number of lines remaining after the 
application of the operator, and if the operators 
with nonpositive subscripts are set equal to zero. 
The number of lines coming in and going out must 
be two, of course. 

The expansion in Eq. (5.3) can be proved by 
considering an arbitrary pth-order term and looking 
at the maximum value of the subecript on F, say k. 

This term therefore must have the basic structure 
F2Fa •.. FkJk+IJk ••• Jli without considering the 
K's in Eq. (5.1). Because of the K's in Eq. (5.1), an 
insertion of the type shown in Eq. (4.9) is allowed 
between any or all of the operators as long as the 
total number of F's is p and as long as all subscripts 
are positive. Thus, an arbitrary term in Eq. (5.3) 
corresponds to a definite term in the expanded form 
of Eq. (5.1). Likewise, an arbitrary term in the 
expanded form of Eq. (5.1) corresponds to a definite 
term in Eq. (5.3). 

The terms in Eq. (5.2) are shown in Fig. 17. The 
diagrams can easily be drawn by remembering the 
definitions of the operators F and J in Eq. (3.1). 
The diagrams to an arbitrary order can be con­
structed with the help of Eq. (5.3). 

When the diagrams of Fig. 17 are connected in 
all possible ways, the resulting graphs obtained are 
shown in Fig. 18. In connecting the diagrams in 
Fig. 17, it is convenient to group the allowable 
permutations into cosets of the subgroup Ie, (12), 
(34), (12)(34)}, because the lines going out are 
equivalent if they are antisymmetrized. 

The rules for obtaining the mathematical con­
tribution of the topologically different graphs in 
Fig. 18 are the same as for Gil except that rule (1) 

Order 

o , 
2_ 

+ 2 

2 + 22 -

- 2 

-2 

- 2 

...Q 
1 -- - 2_ 

cal 

K 
+l-

(al 

~= -2 

(e) 

eel 

(g) 

+ l 
2 

+ 2 

x= 
(bl 

Jl.Q.. 

(bl 

(d) 

(1/ 

o 

FIG. 18. The topologically different graphs for the two­
particle Green's function through second order. 
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must be changed to drawing all topologically dif­
ferent graphs with two lines in and two lines out 
as shown in Fig. 18. There is an additional factor 
of (-211')( -i) in rule (5) because there is one more 
J in the expression. The rules are thus essentially 
the same as stated by Nozieres.25 

VI. CONCLUSION 

In this paper an alternative to the usual many­
particle perturbation theory for the Green's function2 

based on Wick's theorem is developed. The treat­
ment here goes beyond that of Klein and Prange3 

in that the linked cluster theorem is shown to be 
valid for any Green's function. In other words, 
unlinked graphs do not contribute to any Green's 
function. The formalism was illustrated by cal­
culating the one-particle Green's function to third 
order, and the two-particle Green's function to 
second order. The advantage of the diagrams used 
here is that all the topologically different graphs 
can be generated with the correct factors. Thus, 
there is no danger of leaving out a topologically 
different graph or getting the wrong factor associated 
with a graph. In higher-order terms, the program 
becomes somewhat tedious, but it is straightforward. 
Group theory can be used to simplify the connections 
somewhat by classifying the graphs according to 
equivalent co sets of the permutation groups. The 
presentation here avoids the unphysical unlinked 
terms and is somewhat simpler than the usual per­
turbation treatment with which this presentation is 
in agreement. 
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APPENDIX. DERIVATION OF THE 
EQUATION OF MOTION 

Because the equation of motion for the Green's 
functions are so important, they will be derived here 
in more detail. The operator Zl in Eq. (2.8) involved 
a differentiation with respect to time, so we can 
differentiate Eq. (2.4) with respect to tl' 

21 See Nozieres (Ref. 2, p. 185). 

i a~l 9,,(1, 2, ... ,2n) 

= i(NI T{i ~~: a2 ... a .. a:+ 1 ••• ~:} IN) 

- (NI :~ tal .. , a .. a:+ 1 '" a2:1 IN}. (AI) 

The last term represents symbolically the differ­
entiation of the time-ordering operator. The equa­
tion of motion for the annihilation operator in the 
Heisenberg picture, obtained from Eqs. (2.5) and 
(2.1), is 

i dar/dtl = [aI' H] 

= el a1 + t L' (12'1 V 13'4')a2;as,a4" (A2) 

If Eq. (A2) is substituted into Eq. (AI), the result 
can be written as 

L' If I dt~ dt~ dt~ t(12' I V 13'4')(-1)"+1 

x a(t~ - tl - 2E) a(t~ - tl - E) a(t~ - tl ) 

X 9 .. (3'4'2 ... nj 2', n + 1, .. , 2n) 

- (NI aTjiJt1 IN). (A3) 

The differentiation of the time-ordering operator has 
not been explicitly given in the literature, so it will 
be given here. It can be obtained by differentiating 
the step functions in Eq. (2.6) 

i(aT / atl ) 

= i L (-I)P'P'(A I A 2 ••• A z .. ) 
P' 

X a(1 - 2)0(2 - 3) ... 0«2n - I) - 2n) 

+ i L (-I)P'P'(A 2 A I A a ••• A 2.) 

P' 

X a(2 - 1)0(1 - 3) '" 0«2n - 1) - 2n) 

- i L (-I)P'P'(A 2 A 1A 3 •• , A 2n) 

P' 

X 0(2 - 1) a(I - 3)0(3 - 4) ... 0«2n - 1) - 2n) 

- i L (-l)P'P'(A2AaA I ••• A2 .. ) 
P' 

X 0(2 - 3) a(3 - 1) 0(1 - 4) '" 

+ i L (-l)P'P'(A2 AaA I A 4 ••• A 2 .. ) 

P' 

X 0(2 - 3)0(3 - 1) a(l - 4)0(4 - 5) 

+ ... (A4) 
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or 

- i L (-1)P'P' 15(1 - 3)(A 2(A IA 3 + A3AI)A4 ... A2,,)8(2 - 3) .. , 
P' 

+ "', 

where pi is a permutation of the numbers 
2, 3, ... , 2n. If the anticommutation relations of 
Eq. (2.3) are used the result is 

i(aT/atl ) 

= i L (-I('P' 512 8(2 - n)(A2 ... A 2n) 
P' 

X [8(2 - 3)8(3 - 4) .. . 

+ 8(3 - 2) 8(2 - 4) .. . 

+ 8(3 - 4)8(4 - 2) .,. 

+ ... J. (A6) 

(A5) 

By considering all possible values of t2 , the step 
functions in the square bracket in Eq. (A6) can be 
written as just 

8(3 - 4)8(4 - 5) ... O«2n - 1) - 2n). 

Eq. (A6) can then be written in the more convenient 
form 

2,. 

i(aT / all) = L (_I)k c5 lk 
k-,,+l 

X 9,,_1 (2, ... k - 1, k + 1, ... ,2n). (A7) 

If Eq. (A7) is substituted into Eq. (A3) and the 
result is substituted into ZI9", we obtain 

9,,(1,2, .. , ,2n) = -ie-i"" i: dt~ (1 - CI)O(tl - tD - cI8(t: - tl)]e;"'" 

X {L' !(12'\ V \3'4')( -If+l c5(t~ - tj - 2f) c5(t~ - tj - E) 

X c5(t~ - tD9,,+1(3'4'2 .,. n;2',n + 1, .. , 2n) 

h } + L i c5 l 'k(-I)k9n_l (2, '" ,k - 1, k + 1, ... ,2n) . 
1;-.... +1 

If the Fourier transform operator of Eq. (2.11) is 
now applied to Eq. (A8) and use is made of the 
representation of the delta function 

and the step function 

c5(x) = 21 1'" dy e;~· 
7r _'" 

(A9) the result is 

Gn = L' (-1)"h(I'2'3'4')(f(I, 1')G,,+1(3'4'2 .. , n, 2',n + 1, ... 2n) 

2 .. 

(A8) 

(AI 0) 

- i L (-I)kGO(I, k)G"_1(2, ... k - 1, k + 1, ... 2n). (All) 
k=n+l 

In Eq. (All) the quantity h is defined by Eq. (2.14), 
and the single-particle propagator is defined by Eq. 
(2.15). By antisymmetrizing and writing the sum 

in terms of the antisymmetrization operator, Eq. 
(2.13) is obtained for the Green's function equation 
of motion. 
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The connection between certain symmetry properties of a reducible algebra generated by the field 
operator and the decomposition into irreducible algebras is exhibited. 

1. INTRODUCTION 

WE investigate a reducible, scalar, charged 
quantum field in a separable Hilbert space 

together with a one-parameter compact symmetry 
group. The situation is similar to that considered in 
a previous paper,l but the restrictions imposed on 
the field are relaxed as compared to Sec. 3 of Ref. 1. 

The statement proven below establishes the con­
nection between the properties of the field and the 
symmetry group on one hand, and the reduction of 
the algebra with respect to the commutant on the 
other hand. Roughly speaking, the one-parameter 
compact symmetry group gives the connection be­
tween the reduced spaces and algebras generated by 
the field, provided that the original algebra, together 
with the symmetry group, is irreducible. 

This is a step forward compared with the result 
of Sec. 3 of Ref. 1. In Ref. 1 we proved only the 
reverse statement which reads as follows: Suppose 
the symmetry group is such that it maps the reducing 
spaces isometrically and the reduced algebras in an 
inequivalent way into each other, then the reducible 
algebra together with the symmetry group form an 
irreducible algebra. This statement, as presented in 
Ref. 1, was proved by using the usually stated 
axioms for the field. Notice that in this paper we do 
not need to appeal to all axioms of field theory. This 
makes it possible to apply the result of Secs. 2 and 3 
to nonrelativistic, and nonlocal, theories. 

2. ASSUMPTIONS AND THEOREM 

We assume the following: Let sr denote a cyclic 
reducible uniformly closed symmetric algebra of 
bounded operators in a separable Hilbert space X 
corresponding to a reducible quantum field theory. 

1/>0 E X denotes a cyclic vector. The commutant 
sr' of sr is assumed to be Abelian. { G (f3) I = ® 
denotes the unitary representation of a one-param­
eter compact group, G({3 + 211') = G({3), G(O) = I, 
G({3) weakly continuous in B.2 

The cyclic vector 1/>0 is assumed to be an eigenstate 
of G({3) for all {3. Finally, sr and ® are assumed to 
fulfill 

G({3)srG+ (ft) C sr, 
i.e., ® maps sr into sr, and if {sr, ®} denotes the 
algebra generated by the union of sr and ®, 

{sr, ®}' = AI, 

i.e., irreducibility of the union. 

Statement: Under the above-mentioned assump­
tions there exists a decomposition of X into a direct 
integral 

such that 
Ell Ell 

G({3) i I aG+(f3) = i I a+n'~' (1) 

2 The representation of the one-parameter compact group 
is unitary. According to Stone's theorem [see, for example, 
F. Riesz and B. Sz. -Nagy, Functional Analysis (Frederick 
Ungar Publishing Company, New York, 1955»), G({3) = exp 
iQ~, where Q is a self-adjoint operator. Because of the periodi­
city condition G({3) = G(B + 211"), the spectrum of Q is 
discrete and consists of integers. This spectrum cannot be 
bounded either from below or from above, unless G({3) com­
mutes element-wise with the Abelian commutant ~'; this 

* On leave of absence from the Max Planck Institut fiir follows in an anlogous way as a theorem proved by Araki for 
Physik und Astrophysik, Munich. the translational group. See H. Araki, Progr. Theoret. Phys. 

t Work supported by the National Science Foundation. (Kyoto) 32, 844 (1964); see also M. Guenin, J. Math. Phys. 
1 J. Lopuszanski and H. Reeh, J. Math. Phys. 7,148 (1966). 7, 271 (1966). 

1821 



                                                                                                                                    

1822 J. LOPUSZANSKI AND H. REEH 

[1 a denotes the identity operator on X a , f(a) is a 
Lebesgue-measureable essentially bounded function, 
A any subinterval of the interval (0, 211'), the depend­
ence of a is always modulo 211'; n = ±1, ±2, .... J 

3. PROOF OF THE THEOREM 

(A). @ does not commute with any element in 
~' except multiples of the unity, since otherwise 
{~, @l', containing all elements in ~' commuting 
with @, would not be a multiple of unity. 

(B). We have 

G({3)~'G+({3) C ~'; 

namely, if B E ~' and A E ~,then 

G({3)BG+ ({3)A - AG({3)BG+ ((3) = C, 

G+({3)CG({3) = BG+({3)AG({3) 

- G+ ({3)AG({3)B = BA - AB = 0, 

since A E ~; therefore C = 0. 
(0). We can decompose X with respect to the 

Abelian ~' in the following way3 

f", (01.) the characteristic function of a Borel set A on 
the support of p. Then by G({3) 

f",(a) -t ff(a). 

If {Ai 1 is a set of pairwise nonintersecting Borel sets 
covering the whole support of P, i.e., E. /tJ..(a) = 1, 
then clearly 

L: f!,(a) = 1. 
; 

On the other hand, we have for Ai n Ak = 0, 

/tJ.,(a)fda) = ° = f!.(a)t.(a), 

i.e., supp f!.(a) n supp f!.(a) = ° (up to points of 
p-measure zero). We therefore arrive at 

ff(a) = {O, 
1, 

which is to say that f f(a) == f ",~(a) again is a charac­
teristic function of a set A~. If we now look at the 
vector 

X = /f! Xa(dp(a»!, st = j$ ~ a, 

~' = {j4 1(01.)1 a} , CPo = j$ CPo a ' IICPoa W 

then the unitarity of G({3) and the invarance of CPo 
(2) together with iiCPoaii = 1 result in 

1. 1 dp (01.) = f dp (01.). 
'" !J.~ 

Here a is running over a finite segment of the real 
axis containing the spectrum of an operator A gen­
erating ~', pea) = (CPo I EaCPo) is given by the spec­
tral resolution of that operator (we may assume 
J dp (01.) = I), f(a) denotes an essentially bounded 
pea) measurable function, and 1 a stands for the 
identity operator in the Hilbert space Xa. The 
reduced algebras ~a of the reduced operators in Xa 
are irreducible for almost all 01.. 

(D). By the equivalence of ~' and the set of 
functions {f(a) l, G({3) defines a linear one-to-one 
map of the set {f(a) J into itself. We see from (A) that 
the only f(a) invariant under @ are f(a) = const 
(almost everywhere). 

Furthermore, we see that the mappings f(a) -t 
f~(a) defined by G({3) have the property 

Ma)Ma) -t f~(a)f~(a) 

and are measure-preserving. The first property is 
an immediate consequence of the fact that the 
product of two essentially bounded measurable func­
tions is again essential bounded and measurable 
together with the definition of the mapping. To 
demonstrate the second assertion, we denote by 

8 M. A. Naimark, Normed Rings (Stechert-Hafner Service 
Agency, Inc., New York, 1964), Chap. VIII. 

In other words: G({3) induces a mapping a -t a~ of 
the points a which is one to one (up to points of 
p-measure zero), p measure preserving, and there is 
no invariant proper subset of points with nOll­
vanishing p measure. By f~(a) = f(a~) we have an 
extension of the mapping induced by G({3) to all 
functions E 1/(p(a»/ and for f, g, andf·g E Ll(p(a» 
we have again 

(3) 

We denote in the following by G({3) the unitary repre­
sentation induced by G({3) in L2(p(a» C Ll(p(a». 

(E). The results of the foregoing paragraph say 
that the mapping is ergodic; such mappings are 
well investigated.5 In particular, we have the fol­
lowing properties: The only invariant functions in 
L'(p(a» clearly are f(a) = const. Let us look at the 
eigenfunctions of G({3) in L2(p(a». Since G({3) is 
compact, they form a complete basis and there 
exists at least one eigenfunction c,om.(a) 

G({3)c,om .• (a) == c,om.,(af!) = eimf! ·c,om •• (a) 
----

4 E. Hopf, Ergodentheorie (Springer-Verlag, Berlin, 1937, 
and Chelsea Publishing Company, New York, 1948), pp. 4 
and 8. 

6 J. von Neumann, Ann. Math. 33, 587 (1932), and Collected 
Works II, A. H. Taub, Ed. (Pergamon Press, Inc., New York, 
1961), p. 307, and Ref. 4. 
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(111,0 ..... 11 = 1; for m ¢ 0, e accounts for a possible de­
generacy of the eigenvalue). From this we see that 
the complex conjugate function cp! .• (a) belongs to 
e-im/J, hence it follows by Eq. (3) that cp!.,(a)CPm.,(a) 
is invariant and therefore equal to a constant, say X. 
In particular, 

cp". .• (a)cp! .• (a) = 1, 

thus cp .. ,(a) = XCPm, (a), i.e., every eigenvalue is 
simple. 

Denote by n the smallest m > 0. By (3) we have 

[cp .. (a)]k == Xk(a) 

for the eigenfunction for eikn/J, k = 0, ±1, ±2, .... 
The x~ form a complete system in L2(p); this can be 
seen as follows: Assume that there exists an eigen­
value m > n which is no multiple of n. Then m, n 
have a greatest common factor (m, n) smaller than n. 
But then there exist integer numbers p., I' such that 
p'm + vn = (m, n). Hence (CPm)~, (CPn)' would be 
eigenfunctions with the eigenvalue (m, n) < n con­
tradicting that n is the smallest such number. 

Now, by an isometric mapping, L2(p(a» can be 
mapped onto L~o.2r) (a) by requiring that Xk(a) 
corresponds to eika

, and in L~o.2r)(a) we have 
a/J = a + n{3 (mod 211'); from G({3 + 211') = G({3), we 
have n = ± 1, ±2, .... This accomplishes the proof. 

4. APPLICATION TO A LOCAL, 
RELATIVISTIC FIELD 

The statement presented in Sec. 2 and proved in 
Sec. 3 can be specified to a case considered in Ref. 1. 

This can be accomplished by assuming Lorentz 
invariance, spectral condition and locality for the 
field as well as cyclicity of a vacuum state n. In 
addition, we specify the transformation of the field 
under the symmetry group G({3) to be linear, i.e., 

G({3)A(x)G+({3) = ein/J A (x) , 
(4) 

G({3)A+(x)G+({3) = e-i .. /J A+(x). 

Then we can omit the assumption in Sec. 2 that ~' 
is Abelian as superfluous; it follows from a theorem 
proved by Borchers. 6 

Due to (1) and (3) we have for 
E!) E!) 

XL\ = i laX = i Xa(da)', 

E!) E!) 

nL\ = i Ian = ina, 
and, if A a denotes an operator in X a ,7 

I H. J. Borchers, Nuovo Cimento 24, 214 (1962)j see also 
Appendix 1 in Ref. 1. 

7 The decomposition can also be done for the unbounded 
field operators as follows from E. A. Nussbaum, Duke Math. 
J. 31, 33 (1964). 

the formulas 

G({3)XL\ = X.:I+n/J. 

G({3)nL\ = nL\+n/J, 

G({3)AL\(x)G+({3) = ein/J AL\+np(x). 

respectively.8 These formulas are analogous to those 
given in Ref. 1, Eqs. (2.1) and (2.2). 

Notice that almost all spaces Xa are Hilbert spaces 
of infinite dimension if we exclude the uninteresting 
case that X consists of vacuum states only. This can 
be shown as follows. 9 

The unitary representation U(A, a) of the Lorentz 
group is contained in ~" as was shown by Borchers, 6 

therefore it is also reduced by the decomposition of 
the Hilbert space. Since, on the other hand, n is 
invariant under G({3), it follows that G({3) commutes 
with U(A, a). Since X has states not invariant under 
the Lorentz group, there exists a finite interval A 
such that every Xa with a E A contains states non­
invariant under U(A, a) and therefore having infinite 
dimension. But then the same holds for every other 
subinterval. Assume that the latter is not true; then 
there is an interval A' of length smaller than A such 
that f~, X,,(da)i contains only vacua. There exists a 
</> E f~ Xa(da)t which is not invariant under U(A, a) 
and mapped by a certain G({3) into </>' E f L\' X,,(da)t. 
Applying U(A, a), we get 

U(A, a)G({3)</> = U(A, a)</>' = </>' 

= G({3) U(A, a)</> 

such that U(A, a)</> would be mapped by G({3) onto 
</>' too. But this contradicts the unitarity of G({3) 
(one-to-one mapping). 
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An irreducible unitary representation of any group belongs to one of the three Wigner classes 
p.otential~y real, pseudo-real, or complex. The irreducible unitary representations of all the compact 
slmple Lle groups except those of the type E are hereby classified. The similar classification for the 
simple groups E6, E7, and Es is completed in the next paper. 

1. INTRODUCTION 

GIVEN a (finite-dimensional matrix) representa­
tion D of a group G, the complex conjugate D* 

of D is also a representation of G. If D is irreducible 
and unitary, so is D*. The irreducible unitary rep­
resentations (IUR's) D and D* mayor may not be 
equivalent. If they are not equivalent, we say, fol­
lowing Wigner/ that D is complex. If, on the other 
hand, D and D* are equivalent, i.e., if there exists 
a C, the same for all group elements, such that 

D = CD*C-\ 

then it can be proved that the unitary matrix C is 
either symmetric or antisymmetric and there are 
two cases to be distinguished. 

(1) C is symmetric: In this case a transformation 
matrix U can be found such that the representation 
p = UDU- 1 is real: p = p*. 

(2) C is antisymmetric: In this case no U with 
the above property exists. However, one can find a 
U such that the representation p = UDU- 1 satisfies 
the condition Zp = p*Z, where Z is the real anti­
symmetric unitary matrix having nonzero elements 
only in the super- and subdiagonals: 

[

0 -1 0 O"'l 
1 0 0 0'" 

Z - 0 0 0 -1 ••• I = lO -IJ +' [0 
-0010"',-101 

::::::::::::::::J 
(1.1) 

We call Z the pseudo-unit matrix. 
The above two properties are intrinsic to the 

representation and are not affected by further sim­
ilarity transformations. 

When D and D* are equivalent, D = CD*C-\ D 
is said to be real. Furthermore, it is of the positive 

* Present address: Palmer Physical Laboratory, Princeton 
University, Princeton, New Jersey. 

1 E. P. Wigner, Group Theory and Its Applications to the 
Quantum Mechanics of Atomic Spectra (Academic Press 
Inc., New York, 1959), pp. 285-288. Professor Wigner has 
kindly pointed out that this classification is due originally to 
G. Frobenius and 1. Schur, Proc. Berlin Acad. 186 (1906). 

sign or "potentially real" if C is symmetric, CT = G, 
and is of the negative sign or "pseudo-real" if C is 
antisymmetric, CT = - G. 

We exaInine in this article all the irreducible 
unitary representations of simple Lie groups except 
the three isolated ones E6 , E7, and Es and determine 
its Wigner class whether it is complex or real and if 
real of what sign. The same question about the E 6, 

E 7 , and Es will be answered in the next article. 

2. ROOTS, WEIGHTS, AND CHARACTERIZATION 
OF THE REPRESENTATIONS 

A unitary representation of a Lie group can be 
inferred from that of its algebra by exponentiation. 
For the algebra of order r and rank l we choose a 
Cartan-Weyl basis, so that the commutation rela­
tions assume the standard form2

: . 

(Hi, Hi) = 0, i, j = 1,2, .,. , l; 

a = 1, 2, '" , t(r - l); 
(2.1) 

I 

[Ea, E-aJ = L: r.(a)H.; 
i=l 

N,,~ ,r: 0 only if rea) + r((3) is also a root. The Killing 
scalar products are 

(H" Hi) = 1, 

all other scalar products are zero.2 The roots rea) 
satisfy the condition 

if 1, = ], 

otherwise, 

and the structure constants are rea1.3 

riCa) = r~(a), (2.2) 

I E. Cartan, thesis (1894), reprinted in Oeuvres Completes 
(Gauthier-Villars, Paris, 1952), Part 1, Vol. 1. 

a H. Weyl, Math. Z. 23, 271 (1925); ibid. 24, 328 (1926). 
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A positive root is one whose first nonzero com­
ponent is positive. A simple root is a positive root 
which cannot be written as a sum of two positive 
roots. There are l simple roots Si, i = 1, ... , l, and 
any other root r can be written as 

I 

r = La,s, 
i-I 

with integers ai, all of the same sign.2
•
4 

(2.3) 

The matrices representing Ea and E_ a will be 
Hermitian conjugates of each other and those rep­
resenting Hi will be Hermitian and can be taken to 
be diagonal and hence real. Thus the coefficient of 
Ea must be the complex conjugate of that of E_ a 
and the coefficient of Hi must be real in the linear 
form to be exponentiated. 

D(a, b) = exp {i L ajHi + i L baE,,}, 
(2.4) 

ai = a~, ba = b!". 

An irreducible representation can be characterized 
by its highest weight. 5 This highest-weight M can 
be written in terms of the l fundamental dominant 
weights n; as 

I 

M = LAini (2.5) 
i-I 

with nonnegative integers hi' Thus an irreducible 
representation can be characterized by the l non­
negative integers hi once the fundamental dominant 
weights n i are known. 

To get the fundamental dominant weights one 
may use the condition that for any weight M and 
any root r, 2M ·r/r·r is an integer. For each root 
r we get a linear condition on the components of 
M. These conditions are linearly independent only 
for the simple roots, and when inverted to have the 
form of Eq. (2.5) give the fundamental dominant 
weights. In ot.her words, the fundamental dominant-

4 E. B. Dynkin, Usp. Math. Nauk 59 (1947); Trans!. Am. 
Math. Soc. No. 17 (1950). 

5 E. Cartan, Bull. Soc. Math. France 41, 53 (1913), 
reprinted in Oeuvres Completes, Part 1, Vo!' 1. In this article 
we noticed two serious errors in the enumeration of the 
multiplicities of various weights of the groups Cn and E 7• 

For the fundamental representations of the group C .. , the 
multiplicity of the weights of gr which are obtamed from 
reflections of the highest weight of gr-2a is 

",-( n:-,-:--r,---!-+--",l ),--,( n:..:--._r_+-,-:-,2:..:.a:!-) ! d n! - an not - 1 
a!(n-r+a+l)! a!(n-a)! 

a1:l given by Cartan. Similarly, for the group E 7, the multi­
plicity of the weight II2 in the representation g6 is 71 and 
not 56. Cartan missed the 15 states [X,iYiYii]' Thanks are 
due Dr. P. K. Srivastava, who strongly doubted the num­
ber 56. 

weight n. is defined by the equations 

(2.6) 

for any simple root Sj. We reproduce in the Ap­
pendix a possible choice of the roots and the funda­
mental dominant weights. 

For any weight M and any root r, one gets another 
weight by reflecting M in the plane perpendicular 
to r 

8 rM = M - 2(M·r/r·r)r. 

The reflections 8 r together with their logical prod­
ucts form a (finite) group 8, known as the Weyl 
group. If 2M ·r/r·r 2': 2, then M - jr with 1 :::; 
j :::; 2M·r/r·r, are also weights. Starting with the 
highest weight, one can construct all the weights 
of the IUR in this way. 

Another important quantity relating to a rep­
resentation is its character x. It is defined3

•
6 by 

X(A, I/J) = HA, I/J)/~(O, I/J), 

HA, I/J) = L ~s exp [i(8K) '«1>], 
s 

where the sum is over the Weyl group 8 of reflections 
defined above and Os is + 1 for an even number of 
reflections and -1 for an odd number. Let R be the 
semi-sum over the positive roots 

R = ! Lr(a), 
a.+ 

then K is the sum of R and the highest weight M of 
the representation 

(2.7) 
I 

=R+ LAini' 
j-l 

Two (finite-dimensional) representations are equiva­
lent if and only if their characters are equal. Thus 
an IUR is real or complex according as its character 
is real or complex. This means that an IUR is real 
if and only if one can find an element 8, of the Weyl 
group 8 which changes the sign of K: 

8 1K = -K. 

However, we have not been able to read out the 
sign of a real IUR from its character alone. 

In dealing with the reduction of the direct product 
of two IUR's the formula for the dimension number 
is helpful. In terms of the highest-weight M, the 

6 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee, 
Rev. Mod. Phys. 34, 1 (1962). 

7 H. Chandra, Ann. Math. SO, 68, 900 (1949); Proc. Am. 
Math. Soc. 1, 205 (1950). 



                                                                                                                                    

1826 M. L. MEHTA 

dimension number of an IUR is given by8 

II { M.r(a)} 
N(}..I' }..2, ••• , }..I) = a,+ 1 + R.r(a) , (2.8) 

where R is the semi-sum of the positive roots and 
the product is taken over all the positive roots. 

Using the character formula of Weyl one can de­
duce that 9 

L 8s'Y(m + R - SR) 
s 

{
1 if m = M, 

= 8mM = ' 
0, otherwise, 

(2.9) 

where 'Y(w) is the multiplicity of the weight w, M 
is the highest weight of the IUR, m any other weight, 
and the summation is taken over all the reflections. 
In particular 'Y(w) = 0, if w is not a weight. Equa­
tion (2.9) together with 

'Y(Sm) = 'Y(m) (2.10) 

is sufficient to determine the multiplicity of a weight 
m, if the multiplicities of all the higher weights are 
known. The multiplicity of the highest weight being 
one, we can determine the multiplicities of all the 
weights step by step. (See note added in proof.) 

Now the reduction process is quite straightfor­
ward. 

3. THE FUNDAMENTAL DOMINANT WEIGHTS 

Since we need to know only the ratios of the 
various scalar products for the roots and weights, 

A .. -l or SUn 

B" or 02n+l 

Sn-I S I\-.t. 

it is sometimes convenient to use the Dynkin dia­
gram. This diagram consists in representing the 
simple roots by points, assigning to each point a. 
number equal to the square of that root and joining 
two points by a single, double, or triple line accord­
ing as the angle between the represented roots is 
120°, 135°, or 150°. If the angle is 90°, the points 
are not joined at all. As the simple roots are linearly 
independent,4 they can be chosen to form a basis 
in the root space or in the weight space. Thus a 
root r is represented by the coefficients a, in Eq. 
(2.3). Similarly, any weight can be expressed as a 
linear form of the simple roots and represented by 
the corresponding coefficients. As the simple roots 
do not form an orthogonal basis, one has to be care­
ful in the manipUlations. 

If one can choose a set of l mutually orthogonal 
roots, where l is the rank of the group, then the Weyl 
reflections with respect to these roots will change 
the sign of any vector and in particular that of 
K = R + M. This will then be a sufficient condition 
for all the IUR's to be rea1. 10 For all the IUR's to be 
real, this condition is also necessary as we have been 
able, in every individual case, to locate such a set of 
orthogonal roots. 

Following is a list of Dynkin diagrams and funda­
mental dominant weights for the simple groups 
An, Bn, en, Dn , G2 , and F4 • The roots can be easily 
constructed by Dynkin's method4 and we do not 
find it useful to list them. 

1 
P = n> 

j = 1, 2, .. , ,n - 1. 

SJ. ~Os"- • • ---- -
___ $3 

I 1 

iP f f ! J f 
P = 2n- 1 ' 

j .. 

OJ = (j - 1)81 +IL (k - l)sk + (j - 1) L Sk, j = 2,3, ... ,n. 
k-2 k-;+1 

• H. Weyl! Ref. 3, p. 389. . 
• G. Racan, "Group Theoretical Concepts and Methods in Elementary Particle Physics," in Istanbul Summer School 

Lecture8, 1962, F. Gurnsey, Ed. (Gordon and Breach Science Publishers, Inc., New York, London, 1962). 
10 I am thankful to Dr. P. K. Srivastava for pointing out that this was the case in all such constructions. 
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en or Sp(n) 

~.sI\~1 S,,-.2. .$"'-3 SJ. S, 1 "-../----1,----__ , ...... - - - - - - -- ... , -----.1 , P = 2n + 2 j 

:If f ~ f ! ! 

D .. or 021> 

$, 

i .. 

III = !is .. + L kSJ; + j L Sk, 
i-I k-i+l 

j = 1,2, .. , , n. 

Sa P ~~s_ ... -_-s ... ---,--ff-n. a. 

s/.f .I .f 
- - - - ... 1 ------" 

.P .f 
p 

.. 
III = lns, + Hn - 2)S2 + t L (k - 2)Sk, 

k-3 

i .. 

1 
p = 2(n - 1) 

lli = tU - 2)(s, + S2) + L (k - 2)sJ; + U - 2) L Sk, j = 3,4, ... ,n. 
k-3 k-i+l 

S'es
-'. 

.f 9.1 ' 

$, ;0:; f 

S,z 

ll, = 2s1 + 3sa + S2 + 2s" 

U a = 3s1 + 6sa + 2s, + 4s4 , 

ll, = 2s1 + 4sa + 2s2 + 3s4 , 

ll4 = 4s1 + 8sa + 3s2 + 6s4 • 

4. CLASSIFICATION OF THE IRREDUCmLE 
UNITARY REPRESENTATIONS 

irreducible" real representations DI and D2 

1827 

(4.1) The problem of classification is greatly reduced 
by the following few lemmas. In what follows, we 
are concerned with the finite-dimensional unitary 
irreducible representations. 

Lemma 1,' If on reducing the direct product of 
two real representations Dl and D2 one gets a real 
representation Da then the product of the signs of 
these three real representations D I , D2 , and Da is 
positive. 

where L in the direct sum above may be irreducible, 
further reducible, or even nonexistent. Then from 
the matrix equation 

Proof,' Let the irreducible real representation Da 
occur in the reduction of the direct product of two 

we have 

(P X Q)(R X S) = PR X QS 
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or using Eq. (4.1) 

Da + L = B(AI X Az)B*-1 

X (Dt + L*)B*(AI X A 2)-IB- I . 

Therefore, one may writ.e 

where 

L = ALL*A~I. 
Thus t.he symmet.ry of A3 and A;. is the ",amI' al' t.hat 
of .1,1 X A 2 • Al::;o 

(AI X Azf = Ai X A~, 

and we have proved the lemma. 

Lemma 2: If on reducing t.he direct product of a 
representation wit.h (a represent.at.ion equivalent. to) 
its complex conjugat.e, a real representation appears, 
then its sign is positive. 

Proof: Let a real IUR Dz occur in the reduction 
of the direct product of DJ and AID~A~1 (equivalent 
to D~), 

so that 

(1 X A 1)(D1 X D~)(1 X A lr 1 

= B-\Dz + L)B, (4.2) 

where 1 is the unit matrix. Taking the complex 
conjugate and using the fact that R X Sand S X R 
are related by a similarity transformation, we have 

(1 X A I)*P(D1 X D~)P-l(1 X A 1)*-1 

= B*-I(D~ + L*)B*, 

where 

P(D I X D~)P-I = Dt X D I . (4.3) 

Using Eq. (4.2) once more one deduces that 

Dz + L = N(D't + L*)N- I
, 

where 

N = B(l X AI)P-I(l X AI) TBT 

= [~2 ;J. (4.4) 

The matrix N is symmetric if P is so. Now for any 
Rand S, the relation 

peR X S) = (8 X R)P 

is satisfied by the choice 

This P is nonsingular and symmetrie if the dimen­
SiOllS of the square matrices Rand 8 are equal. As 
the dimensions of DI and D~ are t.he same, t.he P 
oceurring in Eqs. (4.3) and (4.4) is i"ymmetric and 
unit.ary. Hence A2 is symmetric and D2 is posit.iV!'. 

Lemma 3: The unitary matrix C t.ran,<Jforming a 
real representation D of the group into it.s complex 
eonjugate D*: 

CDC I = D* 

will t.ransform the representat.ion L of the corre­
sponding algebra into - L T 

and conversely any C transforming L to - L T will 
transform D to D*. 

Moreover, the only nonzero elements of C will be 
t.hose connect.ing t.he stat.es of equal and opposite 
weights. 

Proof: From the relation 

D(<I» = exp (iL '<1» 

the first part of the lemma is obvious. For the last 
part one may consider the equation 

CHj + HjC = 0, 

where Hi diagonal and real; and the diagonal ele­
ments of Hi are t.he jth component of the weight.s 
of t.he various states. 

Lemma 4: If t.he dimension number of a real 
IUR is odd, then it.s sign is positive. 

This is obvious from the fact that an antisym­
metric unit.ary (transformation) matrix C of odd­
dimension number does not exist.. 

Lemma 5: The regular representat.ion is positive 
real. 

This result. is t.he same as Eq. (2.2) above. 
In the light of the above lemmas let us examine t.he 

IUR's of simple Lie groups one by one. 

4.1. The Group A"-1 or SU .. 

The set of reflectiOllS corresponding to the root.;; 
L~:}S; for j = 1, 2, .. , , an] + 1, where [~] is the 
largest integer less than or equal to !n, when ap-
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plied in any order to the vector :E;-Iaisi changes it 
to - L:;-Ian_isi for arbitrary coefficients ai. Thus 
the above set of reflections changes K. = R + IIi 
to -K .. _. = -(11 .. -. + R) for i = 1,2, .,. ,n - 1, 
where R is the semi-sum over the positive roots: 

1 »-1 . . 

R = 2 ~ J(n - J)(S; + S,,-i)' 

Therefore the character x. of the fundamental rep­
resentation U; corresponding to the dominant weight 
II, is the complex conjugate of that of Un-i corre­
sponding to II,,-i' Thus an IUR (AI, A2 , ••• , A .. - I ) 

is real if an only if Xi = A .. _i for i = 1, 2, ... , n - 1. 
If n is odd, none of the fundamental representations 
is real and all real representations arise on reduction 
of direct products of mutually complex conjugate 
representations. Hence all of them have positive 
sign. If n is even, n = 2m, one of the fundamental 
representations, i.e., the Um corresponding to II", is 
real and we show below by an explicit construction 
of the transformation matrix C that this representa­
tion has the sign (-1) m. 

The representation UN; of 8U2m having the highest­
weight II", is emCm)-dimensional and indicates how 
the 2mCI representation UI of the 8U2m itself trans­
forms the antisymmetric quantities [X."x" • ... x" .. ]; 
a1 < a2 < ... < am; aI, a2, ... , a", = 1, 2, ... ,2m; 
into themselves. As the trace of any Hi is zero, we 
see from Lemma 3 that the only nonzero elements 
of C are those connecting the states (al a2 ... a",) 
and (f3d32 ••• 13m), where al < a2 < ... < am, 131 < 
132 < .. , < 13m and al •.• a".{3t ..• 13m are the indices 
1, 2, .. , , 2m in some order. Next, a consideration 
of the equation 

tells us that the nonzero elements of C all have the 
same magnitude and may differ only in the sign. 
This sign depends on the order of the indices and 
is easily determined. Thus C may be taken to be 

where al < ... < am, 131 < ... < 13m, E is the parity 
of the permutation 

r 1 2 ... m, m + 1 ... 2m] . 

tal a2 •.. am 131' . . 13m 

and all other elements of C are zero. 
This C clearly satisfies the equation 

CT = (-I)"'C 

and therefore the sign of the real representation 

""'C", or Um of 8U2m having the highest weight II", 
is (-1)'". 

The final result for the group A"-l can therefore 
be stated as follows. 

Theorem 1: The representation (X" A2, ••• , X .. _I ) 

of A n - l is complex, unless Ai = A,._i, i = 1, 2, ... , 
n - I, in which case it is real. The sign is plus if 
n is odd, and (-1)'" Xm if n is even, n = 2m, m an 
integer. 

4.2. The Group B" or 02ft+l 

The n roots SI, SI + :E7-k Si, k = 2, 3, .. , , n 
form an orthogonal system. The corresponding re­
flections will change the sign of any vector and in 
particular that of K = R + M. Thus all the IUR's 
of Bn are reaL To determine the sign, it is sufficient, 
in view of the Lemma 1, to determine the signs of 
the fundamental representations only. 

The representation U2 having the highest weight 
112 is the well-known set of (2n 1) X (2n + 1) 
orthogonal matrices leaving the symmetric bilinear 
form x~ + L:7-1 (x~ + X: i ) invariant. The infinitesi­
mal matrix 

is antisymmetric as well as Hermitian and hence is 
pure imaginary. The matrix C in CL = _LTC is 
therefore the unit matrix. The representation U2 
is real positive. 

One can derive the above result also as follows. 
The matrices D of the representation U2 satisfy 
D T D = 1. They are also unitary D + D = 1. There­
fore they are already real: D = D*. 

The representations Ua, U4, ... , Un having the 
highest weights 0 3, 114, ••• , II .. arise on reducing 
the direct powers of U2' All these representations are 
therefore real positive according to Lemma 1. 

The representation Ul having the highest-weight 
III remains to be examined. This representation 
is given by5 

(4.5) 

(4.5') 

(4.6) 
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E(+I-k) = ~ 101+1 ... Ek-l 

1 ~ j < k ~ n, ~4.8) 

in terms of the basis states X", •• ,. where the indices 
10 are + 1 or -1 independently of each other. 
Putting E~ = - 10; we see from the equation CL = 
-LTC, with L equal to Hi or EC+j) that the nonzero 
elements of the matrix C (between the states 
x,,"," and x" .... ,.J satisfy the relation 

Hence one concludes that 
CT = (_l)I+2+ ... +nc = (_I),n(n+llc 

and the sign of gl is (_l),,,(n+l) . 

For the group Bn we therefore have the following 
result 

Theorem 2: All the IUR's of Bn are real. The sign 
of the representation (AI, ... , An) is (_l),n(n+l)Al' 

4.3. The Group en or Sp(n) 

The n roots 8n , 8n + 2 ~7:~ 8;, j = 1, 2, ... ,n - 1 
form an orthogonal system. Hence (by the remark of 
Sec. 3) all the IUR's of Cn are real. 

The representation gl is the well-known set of 
2n X 2n symplectic matrices leaving the antisym­
metric bilinear form ~7-1 (X;Y-i - x_;Y;) invariant. 

The matrices D of gl satisfy the relation DTZD = Z, 
where Z is pseudo-unit matrix of Eq. (1.1). The 
matrices D are also unitary: D tD = 1. So that after 
a little manipulation D = Z- l D*Z and Z is anti­
symmetric. Thus gl is real negative. 

The representations g2, g3, ... , gn are obtained 
by the reduction of the successive direct powers of 
gl, hence they alternate in sign. 

Theorem 3: The IUR (All ... , A .. ) of C .. is real 
and has the sign (_1)"+h·+,·+· .. . 

4.4. The Group Dn or 02 .. 

By an argument similar to that used for B", the 
fundamental representations ga, g4, ... , g" of D .. 
are positive real. There remains to examine only 
the representations gl and g2' 

Let n be odd, n = 2m + 1. Then the reflections 
corresponding to the roots 82 ;+1, 81 + 82 + 82;+1 + 
2 ~~-2i+2 8i, for j = 1, 2, ... , m change K1 = R + 
fil to -K2 = -(R + fi2) and K2 to -Kl . The 
representations gl and g2 are therefore (equivalent 
to) the complex conjugates of each other if n is odd. 
Next let n be even, n = 2m. Then the n = 2m roots 
81, 82, 821 +1, 81 + 82 + 82 ;+1 + 2 ~~-21+2' 8 i , j = 
1,2, ... , m - 1, form an orthogonal system and all 
the IUR's are therefore real (Sec. 3). 

One must still examine the signs of gl and g2 in 
case n is even. These representations are given by 
Eqs. (4.5)-(4.8) with the restriction that the product 
of all the E is + 1 for gl and -1 for g2' It is now a 
trivial matter to verify that either for gl or for g2 
the transformation matrix C satisfies the relation 

C ('1-. O'hi-Ieli-t' tli' '1;+1. ···f.). (El'·· °Eli_I' fl/-1EljEI;+1'·· -e.') = - C (h·· oll!,,). (fl'·· °e,,')· 

Therefore, CT = (-l)!nc, n even. The conclusion 
is as follows. 

Theorem 4: The IUR (AI, A2 , ••• , An) of D" is 
complex only when n is odd and Al ¢ A2 • In all 
other cases it is real. The sign is (-1)''+'' if n = 
4m + 2, m an integer. In all other real cases the 
sign is positive. 

4.5. The Group G2 

Roots 82 and 281 + 82 are orthogonal. Therefore 
all IUR's are real. 

The representation gl is seven-dimensional; its 
sign is therefore positive (Lemma 4). 

The 14-dimensional representation g2 is the regular 
representation, and is therefore real positive (Lemma 
5). 

Theorem 5: All IUR's of G2 are real positive. 

4.6. The Group F4 

The four roots 8a, 8a + 84, 82 + 8a + 84 , and 
281 + 82 + 38a + 284 form an orthogonal system. 
Reflections corresponding to them change the sign 
of K. All IUR's of F4 are therefore real. 

The direct product gl X gl when reduced contains5 

the direct sum gl + g2 + ga. And the direct product 
g2 X g2 on reduction gives,5 apart from other things, 
a g4' Thus all the representations have a positive 
sign. The signs of g2 (regular) and g3 (odd-dimen­
sional) could have been inferred directly as well. 

Theorem 6: All IUR's of F4 are real positive. 
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APPENDIX 

The roots and fundamental dominant weights of 
simple Lie algebras with a possible choice of an 
orthonormal basis. 

A.-lor SU" 

Elements of the algebra: 

H; = (2nj(j + l))-t(eu + ... + e;; - je;+I.i+l), 

E i { , , 
~;±k = [8(2n _ I)]t e2;-1.2k-l - e21.2k 

± i(e;i-l,n + e;; .n-l) }, 

E~;'fk = [8(2n ~ 1)]1 {e~;-1.2H + e~i.Jk 
=F i(e'i-l.2.1o - e~; ,n-l) I , 

Roots: 

with 

i < j, a(±j ± k) 

a(±j =F k) 

±[2(2n - l)]-tv;, 

±[2(2n - l)]-t(VI + Vi), 

±[2(2n - 1)]-i(v; - Vk)' 

d 
eii = XiP; == Xi -d ; 

XI 

Roots: 

i, j = 1,2, ... ,n. 

±a(jk) = ±(2~)t {- e j IYv;_l + (k ~ IYvH 

+ ~ [i(i ~ 1)]t} , 1 ~ j < k ~ n, 

where V; is a unit vector in the direction of the jth 
axis. 

Simple roots: 

a(In), -a(j, j + 1), j = n - 1, n - 2, ... ,3, 2. 

Fundamental dominant weights: 

0; = (2n)-i{E [k(k + 1)]-tv• 
10-1 

The summations in the above are to be dropped 
whenever the corresponding indices do not exist. 
The fundamental representations gl, g2, ... , g,,-l 
having 0 1 , O 2 , ••• , 0 .. - 1 as their highest weights 
are usually denoted by the physicists as "C1, "C2 , ••• , 

"C"-2 = "C~ and "C"- l = "C~, respectively. These 
numbers denote the dimensions. 

Order of the Weyl group: n!. 

B .. or O2,,+1 

Elements of the algebra: 

-i 
Hi = [2(2n _ 1)]t e~;-1.2;' 

E - i {' ., I ~; - [4(2n _ 1)]1 e2;-1.2 .. +1 ± u 2; .2 .. +1 , 

Simple roots: 

a(n) , a(j - 1, -J), j = 2,3, ... ,no 

Fundamental dominant weights: 

0 1 = [2(2n - I)r t . !(v1 + ... + v,,), 

0i = [2(2n - 1)]-I(Vl + ... + VI-I), 

j = 2,3, ... ,n. 
Dimensions of the fundamental representations: 

2" (2n + I)! = 2"+1C 
, j! (2n - j + I)! ;, 

i = 1,2, ... ,n - 1. 

Order of the Weyl group: 2"n!. 

e .. or Sp(n) 

Elements of the algebra: 

1 
H; = 2(n + 1)1 (e2;-1.2;-1 - e2I,2;), 

E+I = (2n + 2)-te2 ;_I,21, 

E-i = (2n + 2)-te2i ,2i-l, 

EHH = !(n + I)-t(e2;_l,2k + e2k-l,2i), 

E- i- k = !(n + I)-t(e2; .210-1 + e2k.2i-l)' 

E+;-k = ~ (n + I)-l(e2;_I,2k_l - e2k,2i), 

E-iH = ~ (n + 1)-I(e2i,2k - e2l:-1,2i-l)' 

Roots: 

a(±J1 = ±!(n + 1)-1 ·2v;, 

a(±j ± k) = ±!(n + I)-l(vi + Vk), 

a(±j =F k) = ±!(n + I)-l(v; - Vk)' 
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Simple roots: 

a(j - 1, -I), j = 2,3, ... ,n, and a(n). 

Fundamental dominant weights: 

II; = Hn + I)-l(v i + ... + v;), j = 1,2, '" , n. 

Dimensions of the fundamental representations: 

(2n + 1)! (2n + 2 - 2j) 
j! (2n + 2 - j)! 

J = 1,2, ... ,n. 

Order of the Weyl group: :.tn!. 

Elements of the algebra: 

H - ~ ( 1)-1 , 
j - -2 n - e2;-1.2;, 

E±;±k = ~ (n - 1)-I(e~;_1.2k_1 - e~;.2k 

Roots: 

a(±j ± k) 

a(±j =F k) 

Simple roots: 

± i(e~;_1.2k + e~; .2k-l) I, 

±ten - If!(v; + Vk), 

±ten - I)-!(v; - Vk)' 

a(n - 1, n), a(j - 1, -J), 

j = n, 2, 3, ... ,n - 1. 

Fundamental dominant weights: 

III = ten - I)-l·tev i + 
112 = Hn - I)-~ ·Hv i + 

+ Vn- I + Vn), 

II; = Hn - I)-t(V I + ... + V;-2), 

j = 3,4, ... ,n. 

Dimensions of the fundamental representations: 

2n- 1 2n-1 (2n)! 2nC;, 
, , j! (2n - j)! 

J = 1,2, ... ,n - 2. 

Order of the Weyl group: 2n
-

I n!. 

G2 

Elements of the algebra: 

a = 1,2, ... ,6. 

Roots: 

SI = ~ (~ VI - v2) , 

SI + S2, 2s1 + S2, 3s1 + S2, 3s1 + 2s2. 

The first two roots are simple. 
Fundamental dominant weights: 

III = (I/2v3)v l , 112 = tcv3 VI + v2). 

Dimensions of the fundament.al representations: 
7, 14. 

Order of the Weyl group: 12. 

There are 4 Hand 48 E, a total of fi2 elements. 
Roots: 

1 
± 3\"2 V;, 

1 
3\"2 (±v. ± v;), 

Z, J = 1, 2, 3, 4; any sign combination. 
Simple roots: 

1 
SI = 6\"2 (VI 

1 
Sa = 3\"2 V4, 

Fundamental dominant weights: 

Dimensions of the fundamental representations: 
26, 52, 273, 1274. 

Order of the Weyl group: 1152. 

N ate added in proof: The method given in Sec. 2 
for finding the multiplicities of various weights in­
volves a summation over the Weyl group of reflec­
tions and therefore it is very long. Dr. P. K. 
Srivastava noticed and pointed out to the author a 
formula due t.o Freudenthal which involves a sum­
mation only over a few linear chains of weights. 
[See N. .J aco bson, Lie A 1geb1'as (Interscience Pub­
lishers, Inc., New York, 1962), p. 247, Eq. 22.] It 
is much quicker to get the multiplicities by using 
this formula which reads as follows: 

~ 

= 2 L (em + ka) ·ah(m + ka). 
k-I 
a>O 
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In continuation to a previous article, the classification of the irreducible unitary representations 
of the groups E 6 , E 7 , and E, into complex, potentially real, and pseudo real catagories is completed. 

1. INTRODUCTION 

T HIS is a continuation to an artide by one of the 
authors1

; a few lemmas from the first article will 
often be referred to. In Ref. 1 the irreducible unitary 
representations (IUR's) of the simple groups An, Bn, 
en, Dn, G2 , and p. were examined as to whether they 
were complex potentially real (real positive) or 
pseudo-real (real negative). Here the same thing is 
done for the remaining simple Lie groups E 6 , E 7 , 

and E g • 

2. THE GROUP E6 

The algebra is of rank 6 and order 78. The Dynkin 
diagram is 

In labeling the roots, we have adopted, as always, 
the notation of Cartan. The fundamental dominant 
weights, determined by the equations 

2ll i ·s; = (s;' s;) Oij 

ar0 

III = !(4 5 ~ 4 2) 

== !(4s1 + 5s, + 6s6 + 4ss + 2sa + 3s2), 

ll2 (1 2 ~ 2 1), 

lla 
1-(2 4 6 5 4) 
3 3 , ll. !(5 10 I~ 8 \ 

ll5 
1-(4 8 12 10 5) 
3 6 , ll6 (24~4\ (2.1) 

The corresponding IUR's are denoted by 01, 
02, ... , 06. The sum of the fundamental dominant 
weights is R, the semi-sum over the positive roots is 

6 

R - 1 " () _ "ll _ (8 15 21 15 8) -2"£,....ra -£,....;- 11 • (2.2) 
a. + i=l 

* Present address: Palmer Physical Laboratory, Princeton 
University, Princeton, New Jersey. 

t Present address: C. E. N. de Saclay, France. 
I M. L. Mehta, J. Math. Phys. 7, 1824 (1966). All the 

relevant references are given in that article. 

The four roots 

(1 1 5 1 1), (0 1 5 1 0), (0 ° ~ ° 0), and (1 2 ~ 2 1) 

form an orthogonal set. Reflections corresponding 
to them change Kl = III + Rand K. = ll. + R to 
-Ka = -(lla + R) and -Ks = -(lls + R), 
respectively. The same set of reflections changes the 
signs of K2 = ll2 + Rand K6 = (ll6 + R). Hence 
the IUR's 01 and g, are (equivalent to) the complex 
conjugates of ga and g5, respectively, and the IUR's 
g2 and go are real. 

The lUR 02 is the regular representation having 
78 dimensions and the IUR go has the dimension­
number 2925, an odd number. Thus the real IUR's 
{/2 and g6 are both positive. 

From the above discussion follows the theorem 

Theorem 7: The IUR of the group E6 having the 
highest-weight L: Ai ll; is real positive if AI = A3 
and A4 = As. In all other cases it is complex. 

3. THE GROUP E7 

The algebra is of rank 7 and order 133. The 
Dynkin diagram is 

81 85 87 86 8, 82 
1 1----1 1 1 1 . 

-1 8a 

The fundamental dominant weights are 

III (2 3 ~ 3 2 \ ll2 = H2 4 ~ 5 4 \ 

lla t(4 8 1~ 9 6 3), ll. = (2 4 ~ 5 4 \ 

ll5 (3 6 ~ 6 4 \ ll6 = H6 12 Ig 15 10 \ 

fi7 (481~96\ (3.1) 

The following seven roots are mutually orthogonal: 

r 1 = (2 3 ~ 3 2 \ 

ra (0 1 i 1 ° \ 
r5 t ° ~ ° ° 0), 

r7 = (0 ° goo '). 

t 1 i 2 2 I), 

(01g00\ 

(00g10\ 

Hence all IUR's of E7 are real. 

(3.2) 

1833 
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The IUR's (h, g4, and g5 have odd dimension 
numbers (cf. Appendix) and hence they are positive. 
The IUR's ga and g6 are contained in g2 X g2 X g2 
and hence have the same sign] as g2' The g7 is con­
tained in g] X g] X gl and hence is positive. 

Now we show by an explicit construction that g2 
is negative. 

The 56-dimensional IUR g2 of the algebra E7 is 
given by 

Hi = -X;P; + y;q; '+ 2: XipP;p - 2: y;pq;p 

- i .L: X~~P~~ + i .L: y~~q~", 
E(i) = -.L: x~q;~ - .L: Xi~q~, 
Ew ) = -X;Pi + y;qj + 2: XiPP;p - .L: y;pq;p, 

E(ljk) = -Xi;PIt; - XjkP; - Xk;Pi 

+ y;qjk + y;qlt;i + y,.q;j - 2: y~"p,p, 

The fundamental dominant weights arc 

III = (2 4 ~ 5 4 3 2) 

== 282 + 4s6 + 6ss + 5s7 + 4s5 + 3s3 + 2s1 + 3s., 

II2 = (4 7 Ig 8 6 4 1, 
II3 = ~ 8 1: 10 8 6 3), 

IIo = (6 12 Ig 15 12 8 \ 

II 
_ (8 16 24 20 15 10 a. 

7 - 12 ), 

II. = (5 10 l~ 12 9 6 3), 

II _ (7 14 20 16 12 8 4) 
6 - 10 , 

II 
_ (10 20 30 24 18 12 6" 

s - 15 ). 

The following eight roots form an orthogonal 
system 

(
2465432) 

fl = 3 , (
2343210,. 

f2 = 2 ), 

(
0122210-

fa = 1 ), (
0121000,. 

f4 = 1 ), 

(
0100000) 

fa = ° , (
0000000-

f6 = 1 ), 

(
0001000) 

f7 = ° , (
0000010) 

fs = ° . 

p; = a/ax;, qi = a/aYi, 

(3.3) The IUR g1 is the regular representation. The IUR's 
g2 and ga are contained in gl X gl, the g4 and g5 in 
gl X gl X gl, the g7 in ga X ga, the g8 in g7 X gl 

(3.4) and the g6 in g2 X g2. Thus 

PH = ajax;j, qjf = ajayi/, 1 ~ i < j ~ 7. 

with the understanding that the various indices 
denoted by distinct indices are distinct, and in the 
expression of E(i/kll ijk"AJj,lIp forms an even permu­
tation of the indices 1234567. Let us define C by 

7 

C = L (x;q; - YiPi) 
'-1 

+ L (Xjfqij - y;;p;;). (3.5) 
t:S;i<iS7 

This matrix C transfonns g2 into g~ 

CLC-1 = _LT, (3.6) 

where L is any of the matrices (3.3). The C in Eq. 
(3.5) above is clearly antisymmetric, showing that 
g2 is real negative. We have thus proved the follow­
ing theorem. 

Theorem 8: All IUR's of E7 are real. The sign of 
the IUR having the highest-weight 2: A;II; is given 
by (_I)A.+A.H,. 

4. THE GROUP E8 

The algebra is of rank 8 and order 248. The Dynkin 
diagram is 

Theorem 9: All IUR's of Es are real positive. 
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APPENDIX 

The roots and fundamental dominant weights of 
the simple Lie algebras E 6, E 7 , and Es with a possible 
choice of an orthonormal basis. 

E6 

Roots: 

±2v;, ~ = 1,2,3,4; 

±v1 ± V2 ± Va ± V., ±VI ± V2 ± v2 Vs, 

±Va ± V4 ± v2V5; 
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where v. is a unit vector in the direction of the ith 
coordinate axis. 

Simple roots: 

Fundamental dominant weights: 

III == Vl ~ V2 ~ (i)iv6 , 

113 == Vl ~ V2 - (i)iv6 , 

II, == 2Vl ~ V2 ~ Va - (1/21)vs ~ (1/6i )V6' 

lIs == 2Vl ~ V2 ~ Va ~ (1/2i )vs - (1/61)V6' 

116 == 3Vl ~ V2 ~ Va ~ V,. 

Dimensions of the fundamental representations: 

27, 78, 27, 351, 351, 2925. 

Order of the Weyl group: 72.6! == 51840. 

Roots: 

±2v., i == 1,2, ... , 7. 

Simple roots: 

Fundamental dominant weights: 

III == 2Vl' 

IIa == 2Vl ~ V2 ~ Va ~ VS , 

116 == 3Vl ~ V2 ~ V3 ~ V" 

116 == 3vl ~ 2V2 ~ Va ~ Vs, 

117 == 4Vl ~ 2V2 ~ 2va. 

Dimensions of the fundamental representations: 

133, 56, 912, 1539, 8645, 27664, 365750. 

Order of the Weyl group: 8.9! == 2903040. 

Roots: 

in addition to those already listed under E7 • 

Simple roots: 

Fundamental dominant weights: 

IIa == 3vl ~ V2 ~ Va ~ V" 

II. == 3Vl ~ 2V2 ~ Va ~ Vs + V7, 

115 == 4Vl ~ 2V2 ~ 2va, 

116 == 4Vl ~ 3V2 ~ Va ~ V6 ~ Vs, 

117 == 5Vl ~ 3V2 ~ 2va ~ Vs ~ V6, 

lIs == 6vl ~ 4V2 ~ 2va ~ 2vs• 

Dimensions of the fundamental representations: 

248, 3875, 30380, 147250, 2450240, 6696000, 

146325270, 6899079264. 

Order of the Weyl group: 192.10! = 696729600. 
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Three-Dimensional Formulation of Gravitational Null Fields. I 

R. M. MISRA AND R. A. SINGH 

Department of Physics, U,n1:versity of Gorakhpur, Gorakhpur, India 
(Heceived 19 October 196,';) 

The ~our-d.imensional normal hyperbolic Hiemannian space is represented as a direct product of a 
three-dImensIOnal space and a timelike line. The null gravitational field is defined in a manner 
analogous to that of electromagnetic field. It is shown that in this way three types of gravitational 
null fields can be characterized. We call them gravitational null fields of types A Band C. We find 
as nec~ssary aI~d sufficient conditions, that the gravitational field be null field of types A and B; 
respectIvely. It IS also shown that these null fields admit null vectors in accordance with the properties 
of gravitational radiation fields. 

1. INTRODUCTION 

IN general relativity, owing to the nonlinear char-
acter of the field equations, it is exceedingly 

difficult to obtain exact information of a general 
nature. Therefore, one has to depend largely on 
either approximations or analogies from electro­
magnetic field, where the concept of radiation is 
well understood. However, the study of gravitational 
radiation from the point of weak-field approximation 
has not lead to any definite conclusion about gravita­
tional radiation. 1

•
2

•
3

•
4 The reason for this is that 

the approximation procedure is not generally covari­
ant; instead, the results are made to depend on a 
set of nontensor conditions known as the" coordinate 
conditions," the physical significance of which is 
obscure. It seems that these conditions impose re­
strictions on the geometry of space-time (under 
consideration), these restrictions are seldom desirable 
for the exact information of a general nature. 

Trautman5 has used the model of null electro­
magnetic field to formulate the boundary conditions 
for the asymptotic behavior of gravitational radia­
tion fields. However, this treatment is approximate in 
nature. Also, Pirani6 has been able to characterize 
gravitational radiation fields in an invariant manner 
basing on the fact that, in case of null electromag­
netic fields, the timelike eigenvector of the stress­
energy tensor collapses to the null cone. 7 

1 A. E. Scheidegger, Rev. Mod. Phys. 25, 451 (1953). 
2 J. N. Goldberg, Phys. Rev. 99, 1873 (1955). 
3 A. E. Scheidegger, Phys. Rev. 99, 1883 (1955). 
• H. Bondi and co-workers, however, have been able to 

develop an approximation procedure known as the "multipole 
expansion method" which is free from the objections raised 
here. See H. Bondi, Nature 186, 535 (1960). H. Bondi, 
M. G. J. Van der Berg, and A. W. K. Metzner, Proc. Roy. 
Soc. (London) A269, 21 (1962). 

5 A. Trautman, "Lectures on General Relativity" (mimeo­
graphed notes), The University of London, Kings College 
(1958). 

6 F. A. E. Pirani, Phys. Rev. lOS, 1089 (1957). 
7 J. L. Synge, Relativity, the Special Theory (North-Holland 

Publishing Company, Amsterdam, 1958), Chap. IX. 

In this paper, we propose to obtain another 
criterion to characterize the gravitational radiation 
fields. This may be outlined as follows. Our sensory 
organs do not permit us to observe a 4-dimensional 
manifold in our immediate neighborhood; instead, 
we visualize this space-time region by performing 
observations in our rest-space in a sequence of dif­
ferent times. Because of this, we feel that, in dis­
cussing the problems of general relativity, we should 
pass from 4-dimensional formulation of the theory 
to a 3-dimensional one. Such a procedure is not novel 
and it has been used by several authors. 

The worldline of an observer may be represented 
by a timelike congruence of curves. Let the unit 
vector, tangent to the worldline of an observer, be 
represented by up. Then we have8 

uPu" = -1. (1.1) 

The kinematical properties of the" observers" can 
be studied with the help of this vector. For example, 
if we assume that uP is a constant vector, then its 
existence is a necessary and sufficient condition for 
a space to be the direct product of a timelike line 
and a 3-space. 9 Of course, when uP is a constant 
vector field the space-time is no longer Riemannian 
but Minkowskian. In this case, if a tensor is de­
composed into two parts, orthogonal and tangential 
to uP, then the orthogonal part will be just the 
Euclidean components of this tensor. This procedure 
is exactly analogous to the electromagnetic case 
where the field tensor Fab is partitioned into two 

8 Our operational space is the normal hyperbolic Rieman­
nia~ ~aIl:ifol~ with signature + + + -. The range of small 
Latm mdices IS from 1 to 4 and those of Greek indices is from 
1 to 3. Latin indices are used as tensor indices whereas 
Greek indices shall be used as labels. If an inde~ is given 
a particular value, it will be understood to be a label and not 
a tensor index. Labels as well as tensor indices will follow 
summation convention. 

9 J. Ehlers and W. Kundt, Gravitation-An Introdu,ction 
to Current Research, L. Witten, Ed. (John Wiley & Sons, 
Inc., New York, 1962), Chap. 2. 
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3-vectors E and H in the three space \vith t = const. 
The electromagnetic radiation field is then defined 
by the following conditions 

E·H = O. 

(1.2a) 

(1.2b) 

The significance of these conditions is that, for a 
null electromagnetic field, the two vectors are equal 
in magnitude and are inclined to each other at a 
particular angle. 10 

We propose to apply a similar formalism for the 
discussion of gravitational null fields. We consider 
the tensor Robed as the basic field quantities, the 
analog of the electromagnetic field tensor Fob' 

With the help of the curvature tensor and uP (which 
we shall asmme to be a general vectorfield), we 
eonstruct three symmetric and traceless tensors, 
the analogs of E and H. Different assumptions 
regarding the pig~'nvalues and eigenvectors of these 
tensors will provide us with the criterion for char­
acterizing different types of gravitational fields. 

In Sec. 2, we obtain different algebraic relations 
among these tensors. We confine ourselves to the 
case of vacuum gravitational fields. Later on, we 
also extend this concept to nonempty gravatita­
tional fields. In Sec. 3, the criterion for gravitational 
null fields is given. It is found that three types of 
gravitational null fields can be defined. Sees. 4 and 
5 are devoted to the study of these gravitational 
fields. In Sec. 6, the weak gravitational field has been 
discussed, and it has been shown that such linearized 
fields satisfy our criterion of null fields. 

2. ALGEBRAIC PRELIMINARIES 

The empty space-time of general relativity IS 

characterized by the condition 

R;; = 0, (2.1) 

where Rii is the contracted curvature tensor. The 
eurvature tensor satisfies the following conditionsll: 

Rii(kll = R(ij)kl = RiliklJ = o. (2.2) 

Let the dual of a second-rank skew-symmetric tensor 
T i i be defined as 

so that, with the help of Riikl' we can form the fol­
lowing duals: 

10 In covariant form, Eqs. (1.2a) and (1.2b) are expressed 
as 

F'iFii = !.iikIF'iFkl = 0, 

where .iikl is the alternating symbol. 
11 The round brackets have been used for symmetrization 

and square brackets for skew-symmetrization. 

(2.3a) 

(2.3b) 

We call xR and R
X (indices suppressed) respectively 

the left dual and the right dual of R. It may easily 
be seen that the two duals are equal when (and 
only when) 

Further, let us define 

If (2.1) holds, then we have 12 

Now, we form the following tensors 

Gik = RiiklUiU
I

, 

All these tensors satisfy 

XRiiklUiU
I

, 

xXR'ikZUiU
I

• 

GZ = HZ = KZ = 0, 

(2.4) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

It must be emphasized here that Eq. (2.10) is not 
valid in general but holds only for a vacuum field, 
i.e., under the condition (2.1). Equation (2.11) states 
that the tensors G, H, and K are symmetric; this 
is a consequence of the symmetry properties (2.2) 
of the curvature tensor. In general, they have rank 
three and lie in the space orthogonal to up. In view 
of (2.6), we also have 

Gii + K'i = O. (2.12) 

The curvature tensor has twenty algebraically dif­
ferent components. These are all contained in the 
tensors (2.7)-(2.9). Thus, the components of Rie­
mann tensor are divided into three groups. This 
procedure is analogous to that of electromagnetic 
field where the tensor Fii , in the 3-space t = const, 
is partitioned into two 3-vectors E( =Fi4 ) and 
H(=xF.4). If uP is a constant vector field, then this 
decomposition is of local significance, because here, 
the space-time may be taken to be Minkowskian. 

The Riemann tensor can be expressed in terms 
of (2.7), (2.8), and (2.9) as 

(R + iXR).;kl 

= (g + iE)iimn(g + iE)klr"U'V'(G + iHt' 

= -(g + iE)iimn(g + iE)klp,UmuP(K - iHt'. (2.13) 
12 P. Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. 

AbrandL Math. Nat. Kl. 2, 23 (1960). 
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We observe from these equations that Riikl is de­
scribed with the help of G,; and Hi;. However, Riikl 

cannot be expressed, in general, in terms of Gil> HH, 
and K i ;, and (2.13) is valid only when (2.1) is 
satisfied. Thus, different assumptions regarding the 
relationship between G;i and Hi; will give rise to 
different gravitational situations. In particular, we 
shall define in the next section gravitational radia­
tion fields by assuming the equality of G,; and H ii . 

3. GRAVITATIONAL NULL FIELDS 

As mentioned earlier, our aim is to find out the 
conditions for the gravitational field to be a null 
field. To fix our ideas, the model employed is that 
of the electromagnetic field, which entails the 
equality of the two 3-vectors and their relative 
orientation. Since the gravitational field is much 
more general than the electromagnetic field, we 
obtain three symmetric traceless tensors (2.7)-(2.9). 
Now the condition of the equality of the 3-vectors 
has ~o be replaced by an appropriate condition 
regarding the nature of these tensors. Therefore, we 
make the following assumptions: 

(A). In order that the gravitational field be a radia­
tion field, the tensor G'i must be equal to Hij. By 
equality of the tensors we mean the equality of the 
absolute eigenvalues. This is the simplest assumption 
we can make regarding the nature of G;; and H ii • 

The question of relative orientation of the eigen­
directions has also to be taken into consideration. 
We consider Gu• etc. as 3 X 3 matrices so that they 
have three eigendirections. In the case of null elec­
tromagnetic field, we know that E and H are sym­
metrically situated in the direction of propagation. 
This gives us (B) below. 

(B). If the gravitational field is a radiation field, 
then one of the eigenvectors corresponding to each of 
G OJ and H;; is directed in the same direction, and. the 
other two are symmetrically inclined to each other, '/,.e., 
at 45 0 to each other. 

In view of assumptions (A) and (B), we have to 
deal with the following cases. 

(i) All the three eigenvalues of Gij or Hi; are 
nonvanishing, then from (A) we obtain 

.. Hi; G'iG<' = Hij , (3.1) 

(3.2) 

Obviously in this case, the rank of G'i is three. , H . 
(ii) One of the eigenvalues of Gii or ii IS zero. 

This gives Eq. (3.1) and 

G'kG~G'i = H'kH~H'i = O. (3.3) 

The rank of G'i will be 2. 
(iii) All the eigenvalues of Gi{ are zero. It is 

easy to see that Eqs. (3.1) and (3.3) will again hold. 
Thus we see that, in general, three types of gravita­
tional null fields are possible. We term these gravi­
tational null fields of types A, B, and 0, respectively. 
We shall consider these one at a time. 

4. GRAVITATIONAL NULL FIELDS OF TYPE A 

In this section, we investigate the properties of 
the gravitational null fields of type A. Since (3.1) 
and (3.2) are assumed and (2.13) is valid, the geo­
metric information of the curvature tensor is con­
tained in Gii and Hi;. This means that the geometry 
of R'ikl can be obtained from the properties of G' i 

and Hi{. Now, in this case, a coordinate system can 
be defined, 

G'f = (oM. A~B 
o 0 

(4.1) 

H" = 0 A (
-2A 0 

<, 0 B (4.2) 

It is easy to see that (4.1) and (4.2) satisfy (2.10), 
(3.1), (3.2), and the assumptions (A) and (B). 

For further discussion, it is convenient to use the 
nonholonomic coordinate frame defined with the 
help of unit eigenvectors e. of Gii and Ui' The vectors 
e, satisfy " 
" 

and 

e,u' = 0, .. 

a " 

(4.3a) 

(4.3b) 

(4.4) 

The nonholonomic components of a tensor T;; are 
then defined as 

T "fj = e'eiTij. 
" fj 

(4.5) 

Now we state and prove the following theorems. 

Theorem ('·P): In the 4-space with signature 
+ + + - , the necessary and sufficient condition 
that a vacuum gravitational field be a null gravita­
tional field of type A is 

[RabZU + 2A(P - Q)"bpq,"lIraeVu"u'] 
1 1 

X (R"~ii - A(P - Q)"""' .... ;k! e..t.e..tlu .. u ,,] 

X [Rcdii - A(P - Q)'do!.;;Ohe' ehu'uO
] = 0, 

BB 

(4.6) 
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where P and Q are defined as 

Pabflfl,ZlIT. = (gabPtlgz'IIr. - EabpqEzJlr.) , 

Q.bpq,zur. = (g.bP.gz" .. + gzur.E.bPo) , 

and A and B etc., range over 2 and 3. 

Proof: It has been remarked earlier that the 
matrices (4.1) and (4.2) satisfy the postulates (A) 
and (B). Hence (4.1) and (4.2) represent a situation 
in which the gravitational field is a null field. We 
therefore verify that (4.6) is satisfied in view of 
(4.1) and (4.2), and then state conversely that the 
vanishing of the left-hand side of (4.6) is the neces­
sary and sufficient condition for the field to be a 
null field of type A. In order to do this, we contract 
the left-hand side of (4.6) by uau', and obtain an 

. b b d equation which upon further contractIOn y e e , 
, 1 1 

gives 

Hu = -2A, Hu = 0, (4.7a) 

if, in view of (4.1), the following equations are 
assumed, 

Gll = -2A, GlA = O. 

Similarly, on contraction by ebed and ebed, respec-
2 2 a a 

tively, and taking (4.1) into consideration, one 
obtains 

H22 = !(G22 + G33) = H 33 , 

H 23 = !(G22 - G33) = H 32 , 

(4.7b) 

(4.7c) 

which agree with (4.2). Thus conversely, the theorem 
is proved. Gii and Hii are therefore expressible in 
the forms (4.1) and (4.2); this shows that the eigen­
vectors have the required relative orientation, and 
that the eigenvalues have the required magnitudes. 

Now we shall show that the gravitational field, 
satisfyi~g (4.6), admits a null vector (geodesic ray). 
This is true if the gravitational field is a radiation 
field. 13 

Theorem (4.2): If the gravitational field is a null­
field of type A, then it defines a pencil of null 
vectors given by 

k .. = u .. ± ea, 
I 

(4.8) 

which satisfy the Sach's equation13 

R'iklzkmlkikk = O. (4.9) 

Proof: It has been shown by Debeverl4 that at any 

13 R. K. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961). 
14 R. Debever, Bull. Soc. Math. Belgique 10, Fasc. 2, 112 

(1959). 

point of space-time, where the Riemann tensor does 
not vanish, there are null directions whose multi­
plicity adds exactly up to four. This is known as 
Debever's theorem. This can be most easily proved 
in the spinor formalism, as was first shown by 
Penrose.1 5 Let us define the null directions as 

k. = Ae. + Be. + Ceo + DuM 
1 2 a 

where A, B, C, and D are scalars whose values are 
to be determined. 

Substituting this values of k. in (4.9) and taking 
(2.13), (3.1), (3.2), (4.1), and (4.2) into considera­
tion, we obtain a system of equations in A, B, etc. 
Solving these we find that 

B = C = 0, 

Thus, we obtain 

A = ±D. 

Now since a null vector defines a direction and not a , 
magnitude, we can take, without loss of generality, 
D = 1. This proves the theorem. In the next section 
we consider the gravitational null field of type B. 

5. GRAVITATIONAL NULL FIELDS OF TYPE B 

In this case, Eqs. (3.1) and (3.3) are satisfied, 
since one of the eigenvalues is zero. We shall now 
establish the following theorem. 

Theorem (5.1): If we define a tensor Qiik/ as 

(5.1) 

then the necessary and sufficient condition that an 
empty gravitational field is a null field of type B 
is that 

Q,;kl = O. (5.2) 

Proof: In order to establish this theorem, we 
proceed as previously. Contracting the right-hand 
side of (5.1) by UiU

k we obtain 

(5.3) 

so that from (5.3) we obtain (3.1). Similarly, if (5.1) 
is contracted by u', we obtain 

(5.4) 

Thus, from (5.3) and (5.4), we obtain (3.3). 
Now, since one of the eigenvalues is zero, we can 

always choose a coordinate system in which 

(5.5) 

15 R. Penrose, Ann. Phys. (N. Y.) 10, 171 (1960). 
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We may further assume, without loss of generality, 
that 

quantities of first order. The tensors Gd and H;, 
may be expressed in terms of hi i as follows: 

(5.6) Gii = Hhim,jk + hik,mi - hi;,mk - hkm.ii)ukum, 

Now, contracting (;,).3) by eie l and making use of (6.2) 
11 

(5.5) and (:).6), we obtain H'aH~ = 0 to get Hii = tEikp.(hP'n,~ + h;·pm - h~,·m - h·m'~)UkUm. 

(5,7) 

Again, contracting (5.4) by eiek and eie\ respectively, 
2 2 3 3 

we obtaill 

(6.3) 

In order to investigate the contents of (6.2) and 
(6,3), let us introduce three spacelike constant unit 
vectors v, orthogonal to each other and to U;, "Ye 

H22 = H33 = 0, 

Hence, from (5.3) we obtain 

(5,8) further define the quantities "I;; as 

(5.9) 

The above considerations allow us to n express \ T i i 

and Hii in the following form 

Gu = (8 0 

-~4} A' 
0 

(5.lOa) 

Hii = (8 0 

i} 0 
A' 

(5,lOb) 

The two 3-tensors thus satisfy postulations (A) 
and (B), and hence the statement of the theorem, 

Theorem (5.2): If the gravitational field is a null 
field of type B, then it defines a null vector k. given 
by 

(6.4) 

and assume that the plane gravitational waves are 
functions of only Vi and u i directions. Then we 

1 

obtain, as shown by Bergmann,16 

o 
h~~ 

-h~; 

-~'V,,) 2/23 

h~~ 

with17 

"122 + "133 = O. 

(6.5) 

(6,6) 

Here a vector index has been replaced by a label as 

(6.7) 

ka = u a - ea· (5.11) In a similar manner, we abo obtaill 

The vector ka satisfies the equation 

Ri;k1e = O. (5.12) 

Proof: This theorem may be easily established 
if we proceed as in Theorem (4.2). The present 
theorem also states that all four Debever vectors 
in this case are coincident. In the next section we 
will illustrate the linearized gravitational field as 
a field of gravitational radiation satisfying our def­
inition of null fields, 

6. EXAMPLES: WEAK GRAVITATIONAL FIELDS 

In case of weak gravitational fields, the metric 
tensor can be expressed as the sum of Minkowskian 
metric 'T},; and the deviation metric hi; 

(6.1) 

where 'T}ii diag. (1, 1, 1, -1) and hOi are small 

o 
h~~ 

-h~~ 

o ) 1 " 2"133 • 

-hi~ 

(6.8) 

Equations (6.5) and (G.8) show that the eigenvabes 
are equal and the two tensors can be transformed 
into each other by a rotation of the 23 plane by all 
angle of tii. Thus the linearized gravitational waves 
are gravitational null fields of type B. 

Gravitational null fields of type C will be treated 
in another paper together with nonempty gravita­
tional fields. 
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Helmholtz' solid harmonics (spherical Bessel functions X spherical surface harmonics) are generated 
from fundamental spherical waves through a ladder procedure using raising and lowering operators. 
The addition theorem for them and the bipolar expansion formula of a screened Coulomb potential 
are derived. A method for evaluating two-center integrals with a general potential is given in the last 
section. This is new and useful in practical calculations. A key function 

J';',.cx) = ~ L1 dfJ. e
i

•
x 
P7(fJ.)P";.(fJ.) , 

which appears in all the essential results, is studied in detail. 

1. INTRODUCTION 

IN an essayl to explain the cohesive energy of He4 

at absolute-zero temperature, the author faced 
the need to expand a screened Coulomb potential 
exp( -aPP')/pP' around two centers 0 and 0' 
and utilized an expansion formula (1.1). As a tends 
to zero, it degenerates into the bipolar expansion 
of Coulomb potential obtained by Carlson and 
Rushbrooke. 2 One may find the formula (1.1) to 
have wider applications, e.g., in the calculation of 
the intermolecular binding energy. Buehler and 
Hirschfelder3 supplemented Carlson and Rush­
brooke's formula in the case of overlapping charge 
distributions, but their results are too complicated 
for practical use. 

In quantum mechanics, on the other hand, es­
pecially in the problems of scattering and the struc­
ture of molecules, one often has to deal with partial 
spherical waves of the type 

(spherical Bessel functions) 

X (spherical surface harmonics), 

which may appropriately be named Helmholtz' solid 
harmonics, because they are normal solutions of 
Helmholtz' wave equation 

(~ + (2)f(r) = O. 

* On leave of absence from Tokyo Institute of Technology, 
Tokyo, and from Japan Atomic Energy Research Institute, 
Tokyo. 

1 R. Nozawa and B. Sha, International Conference on 
Theoretical Physics, Abstracts for Symposium on Liquid 
Helium (Tokyo, 1953), p. 5. 

2 B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge 
Phil. Soc. 46, 626 (1950). 

a R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 
628 (1951); 85, 149 (1952). 

Partial wave amplitudes of a general scattering 
process can be continued analytically into the com­
plex l (angular momenta) plane, and their poles, 
"Regge poles," determine the high-energy behavior 
of related processes and provide a connection of 
this behavior with the bound states and resonances 
of the original process. Concerning recent studies 
in this field, the reader may be referred to Squires. 4 

The present paper gives the differential operators 
generating Helmholtz' solid harmonics from the 
fundamental (stationary and outgoing) spherical 
waves (in Sec. 3), the addition theorems for them 
(in Sec. 4), the bipolar expansion of an outgoing 
spherical wave (in Sec. 5), which is mathematically 
equivalent to the bipolar expansion of a screened 
Coulomb or Yukawa potential (1.1). The formulas 
are checked by using a method of divergent inte­
grals and generalized functions in Sec. 7, and, in 
Sec. 8 a new method for evaluating two-center inte­
grals with a general potential is given in a useful 
manner in practical calculations. The essential parts 
of the paper, except for Secs. 7 and 8, have been 
published in Japanese5 and a part of them has been 
generalized by Tanabe. 6 

Let us take a common polar axis connecting the 
given centers 0 and 0' with distance d apart and 
assume that a point P has the polar coordinates 
(r, cos- 1 fJ., cp) with respect to the origin 0 and 
another point P' has (r', cos- 1 fJ.', cp') relative to the 
origin 0'. See Fig. 1. 

Then, the screened Coulomb potential is expanded 

4~. J. Squires, qomplex Angular Momenta and Particle 
Ph~8'tc8 (W. A. BenJamm, Inc., New York, 1963). 

R. Nozawa, Japan. J. Chern. & Solid State Phys 35 
75 (1954). . , 

6 Y. Tanabe, J. Phys. Soc. Japan 11, 980 (1956). 

1841 
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around the two centers 0 and 0' in the following form: 

exp (_~PPi) = a t t (t( (2l + 1)(2n + 1)P7(/L)P";'(/L')E .. cos m(l{' - l{") 
pp 1-0 .. -0 .. -0 

Ji/(ar)i,,(ar')K~,,(ad) , 

X (- )/1i/(ar)k,,(ar,)[,; .. (ad), 

kl (ar) i,,(ar') I';,,(ad) , 

r < Op', r' < d, 

r < Op', r' > d, 

r > Op', 

(1.1) 

where [l, n] denotes the lesser of land n, Em is Neu­
mann's factor, viz., Eo = 1, Em = 2 for m ~ 0, i , 
and kl are modified spherical Bessel functions de­
fined by 

K';n(X){ = (tl (l - m)! (n - m)! (2h - I)! 
l'::.(x) . h- ... (l - h)! (n - h)! (h + m)! (h - m)! 

X \ {kl+,,-h(X) , (1.2) 

and 

X il+n-h(X). 

The formula (1.1) is derived in Sec. 5 and (1.2) is 
proved in Sec. 6. When we make a vanish, formula 
(1.1) reduces to the bipolar expansion of Coulomb 
potential derived by Carlson and Rushbrooke2

: 

1 GO., (/ ... 1 

pp' = t; f.; ~ P7(/L)P";.(/L')Em cos m(l{' - l{") 

which is rewritten in the form 

()
,,+m (l + n)! rlr'" 

- (l + m)! (n + m)! dl+,,+l , 

)
/+" (n - m)! rld"-I 

X ( - (l + m) I (n - l) I r'n+! 

(l - m) I r'''d l
- .. 

(n;;+ m)1 (l - n)l7+l ' 

m(l - m) r'''d
l
-
n 

(-) l- n ~, 

r < OP', r' < d, 

r < OP', r' > d, (1.3) 

r > OP', 

r < Op', r' < d, 

r < OP', r' > d, (1.4) 

r> OP', 

where 11nl should be understood to vanish for 
negative integers n. 

FIG. 1. The system of 
reference; 0' is the second 
center. 

In order to derive (1.3) from (1.1), it is useful to 
replace the modified spherical Bessel functions il(r) 
and kl(r) by their leading terms, cf. (2.12), and to 
pay attention to an identity 

[/.,,1 h (2l + 2n - 2h - 1)11 (2h - 1)11 
~ (-) (l - h) I (n - h) I (h + m)! (h - m) I 

no (l + n)! (2l - 1)11 (2n - 1)!I 
= (-) (l - m)1 (n - m)1 (l + m)! (n + m)l, 

m ;::: O. (1.5) 
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The validity of the identity (1.5) is verified by in­
duction and is also known by comparing (6.5) with 
the first equality of (6.23). 

2. DEFINITIONS AND BASIC FORMULAS 

One occasionally encounters difficulties because 
several different definitions are used for Ferrers' 
functions. For P";(x), the Ferrers' function of order 
m associated with the Legendre polynomial of degree 
l, we adopt the definition 

m (1 - x2)!m (d )'+'" 2 , 
P ,(x) = 2'n dx (x - 1) , 

-l ::; m ::; l. (2.1) 

Throughout the paper, l stands for a positive integer 
or zero, unless otherwise stated. 

As usual, the mth derivative of Legendre poly­
nomials is denoted by Pl"') (x). An extension of this 
notation to negative m not less than -l is often 
found useful. It is defined by 

plm)(x) = }l! (;xY+"'(X2 - I)' 

2hf'" (_)h (2l - 2h - I)!! '-m-2h 
.-0 _....... (l - m - 2h)! (2h)!! x , 

-l ::; m ::; l. (2.2) 

Sometimes, it is convenient to understand P";(x) 
and Plm)(x) to vanish for m > l by extending the 
definitions (2.1) and (2.2) and to vanish also for 
m < -l. The latter extension is consistent with 
(2.3) under the convention that n! = 0 for n < O. 
Owing to the property that 

P_"'( ) ()'" (l - m)! pm( ) 
I X = - (l + m)! I x , 

{ 
(2l + I)JlPz(Jl) = (l + I)pz+l(Jl) + lPZ-1(Jl), 

(2l + I)(d/dx)jz(x) = ljz-I(x) - (l + I)j'+l(x), 

{ 
(2l + I)~zCJ.t) = ~d/dp.)PZ+l~Jl) - (d/dp.)P'-I(P.) , 

[(2l + l)/xlJz(x) = 31-1(X) + 31+t(X). 

In fact, Legendre polynomials are connected with 
spherical Bessel functions by Fourier transforms: 

['I dp. ei%~pz(p.) = 2izjz(x), (2.6) 

[" dx ei~%jz(x) = {7riZPZ(P.), 1p.1 ::; 1, (2.7) 
-0> 0, 1p.1> 1, 

0> 

ei"% = .L: (2l + I)iZj,(x)Pz(p.) , 1p.1 ::; 1. (2.8) 
z-o 

Here, the spherical Bessel, Neumann, and Hankel 
functions, jz(x), nz(x), and hz(x) are defined as 
follows: 

iz(X)l lYZ+i(X) i 

nz(x)f = (;J
1

Yz+ i (X) = (_)'+I(;JJ-z-1(X). 

hz(x) Hl~)i(x) (2.9) 

Further, we define modified spherical Besflel func­
tions, il(x) and kz(x), by 

iz(x) = (7r/2x)il z+1(x) = (-~')Zj,(ix), 
(2.10) 

k,(x) = (-)'(2/7rx)lKz+1(x) = -(-~')zhz(ix). 

The spherical Hankel functions of the second kind , 
hl2 )(x), are given on the real axis as the complex 
conjugate of hz(x), 

hl2 )(x) = [hz(x)]* for real x, 

and are defined for complex z as their analytic con­
tinuation: 

-l ::; m ::; l, (2.3) hz(z) = iz(z) + inz(z) , hl2 )(z) = iz(z) - inz(z). (2.11) 

orthogonality relations and the addition theorem 
for spherical surface harmonics are written in the 
forms 

fl dp. P";(p.)P;"'(p.) = (-)", 2l ~ 1 8zn , (2.4) 

I 

PI(a V b) = .L: (- )"'P";(a V c) 
m--l 

x P1"'(b V c)e''''(''o-''&), (2.5) 

where a V b means the cosine of the angle between 
the vectors a and b, and IPa, IPb are the azimuthal 
angles of a, b about c as the polar axis. 

An intimate connection is conceived between 
Legendre polynomials and spherical Bessel functions 
by a glance at their recurrence relations: 

The leading terms for small argument are 

{

iZ(X) ~ (2l ~ I)!! ' 

n,(x) ~ (_) (2l ~y !!,.I, 
x 

{

iZ(X) ~ (2l ~ I)!! ' 

k ( ) (_) Z (2l - I)!! 
Z x ~ XZ+1 fII, 

{ 

hz(x) ~ (2l - I)!! 
ixZ+ 1 

h(2)( ) i(2l - 1) !! 
Z x ~ XZ+1 , 

(2.12) 
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and t.he leadin~ terms in the asymptotic expansions and the expansion formula for the plane wave III 

are term"; of r:-;pherical wave:; is written al; 
00 I 

e
ikr = L: (2l + 1) L: (- r'J7(kr)P7"'(J.l.k)e- im <P., 

£=0 1n--t 

(2.18) 

iil(X) -7 cos [x - HZ + 1)1I"l/x, 

nl(x) -7 sin [x - !(l + 1~1I"l/x, 
i1(x) -7 e"'/2x, (2.13) (k, eos- 1 

j.Lk, 'h) being the polar expression for k. 
k1(x) -7 (-)le-'Ix, 

h1(x) -7 exp (i[x - HZ + 1)11"])/';' 

h~2)(X) -7 exp (-i[x - !(l + 1)1I"])/x. 

c\ddition theorems for spherieul wun's rend as 
follows: For the Rt.:mding w:we, 

00 

io(lr - r'D = L: (2l + l)jl(r)jl(r')PI(r V r'). (2.14) 
1=0 

For the outgoing wave, 

hu(!r - r'D 

t (2l + l){Mr)h l (I'/)}PI(r V r'), 
I~O hi (r)ir(r') 

I' <7", 

r > r', 

where r V r' means the eosine of the angle spanned 
by rand r'. 

We define Helmholtz' solid harmonics by 

-l S m S l, 

(2.15) 

where (1', COS-1j.L, cp) is the spherical coordinate of the 
point specified by the position vector r. Evidently 
Helmholtz' solid harmonics J~Cr) and H~Cr) have 
the same parity as the spherical surface harmonics 
Y;"(COS- 1

J.1., cp): 

J~( -r) = (-) I J~(r) , 

H~( -r) = (- )'H";(r). 
(2.16) 

Addition theorems, (2.14), for spherical waves are 
now written in the forms 

00 

jo(lr - r'l) = L: (- )1(2l + 1) 
I~O 

I 

X L: (-) m J",!(r)J~m(r'), 
m--1 (2.17) 

00 

ho(lr - r' /) = L: (- )1(2l + 1) 
l=O 

r < r', 

l' > r', 

3. RAISING AND LOWERING OPERATORS 

It is well Imown7 that. spherical solid harmonics 
of uegrce I are gellPrated from 1/ r by diff~'rential 
operators: 

r - (l + II P"'!( cos 6)eim
'l' 

I 1 (a . a )m(a )l-m 1 
= (-) (l - m)! a.T + '/, ay OZ ; , 

m:::: O. (3.1) 

In view of the fact that a fundamental solution 
ei'H/r of the Helmholtz equation (~ + a2 )f(r) = 0 
goes to 1/1' as a tends to zero, can we expect that 
Helmholtz' solid harmonics are derived from hoCar) = 
eiar/iar by some differential operators? 

An affirmative answer is furnished by the follow­
ing formulas: 

H";(r)} = (_i)m(~ + i ~ rp :m) ( -i !!...)Jho(r) , (3.2) 
J7(r) ax ay dZ lMr) , 

H~"'(r)} = im ~l - m)! (iL _ i iL)m 
J~m(r) (l + m)! ox oy 

X Plm )( -i!!... )fho(r) , (3.3) 
az l jo(r) , 

where 0 ~ m S land Pt)(x) is the polynomial of 
degree l - m defined by (2.2), It is verified that 
the formula (3.2) written for H";(ar) multiplied by 
-(-ia)I+1/(2l - I)!! degenerates into (3.1) as 
a tends to zero on account of the asymptotic relation 
(2.12). 

In order to obtain the formulas (3.2) and (3.3), we 
develop a ladder procedure to utilize raising and 
lowering operators" for spherical Bessel functions 
and those for Ferrel'S' functions. 

Let us define a differential operator <Rl by 

<Rl = (01 or) - (llr). 

Then, <Rl is a raising, and <R- 1- 1 is a lowering, 

7 E. W. Hobson, The Theory of Spherical and Ellipsoidal 
Harmonics (Cambridge University Press, New York, 1931). 

8 E. SchrOdinger, Proc. Roy. Irish Acad. 46, 6 (1940); 
L. Infeld, Phys. Rev. 59, 737 (1941); T. Inui, Progr. Theoret. 
Phys. (Kyoto) 3, 168, 244 (1948); L. Infeld and T. E. Hull, 
Rev. Mod. Phys. 23, 21 (1951). 
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operator for degree l of the spherical Bessel func­
tions: 

sin 0·iJ1P";(cos 0) = (l - m + l)P;'+,(cos 8), 

sin O·iJ_I-lP";(cos 0) = -(l + m)P;'_I(cos 8). 

184.5 

iJ_m_1P";(cos 0) = _p;'+I(COS 8), (3.5) 

iJm-1P";(cos 0) = (l + m)(l - m + l)P;'-I(cos 0). 

For Ferrers' functions P";(cos 0), it is usC'ful to define 
a differential operator iJl by 

iJl = (alao) + (l + 1) cot O. 

Then, the degree l is raised or lowered by unity by 
sin OiJ l or sin OiJ_ I_I , respectively, and the order m 
is raised or lowered by unity by iJ- m - I or iJm - I , 

respectively: 

Once these formulas are known for nonnegative 
111, they are readily verified for negative m also, 
provided that P';'(cos 0) are understood to vanish 
when 1m! > l. 

Now, since 

a + . a i'l'(' 8 a + cos 0 a + i a ) - ~-=e SIn - --- -.--
ax ay ar r ao r sm 0 a<p 

w(' have 

(2l + 1)(~ + i ~)H'7(r) 
ax ay 

= (2l + l)(Sin 0.E..- + cos 0 ~ - ~)H,,;(r) .ei'l' 
ar r ao r sm 0 

- [(~ - l)(cos 0 ~ - --!!!:- - (l + 1) sin 0) + (.E..- + I + 1)(_ cos 0 ~ + --!!!:- - I sin O)]Hm(r)e;" 
iJr r ao sm 0 ar r ao sm 0 I 

[ 1. + 1 . JHm ( ) ;<P - l _ m CR I 'sm OiJI·iJ-m _ 1 l + m + 1 CR_ I _ , ·sm 0iJ- 1- 1 ·iJ-m - 1 Ire 

= i[H";::(r) - H";~:(r)], (3.6) 

where use has been made of identities such as 

iJliJ-m_1P";(COS 0) = [iJ", + (l - m) cot 0]iJ-m-1P";(cos 0) 

= (l - m)[cot O(alao) - m cosec2 0 - I - I]P";(cos 8). 

Although the above derivation has been done under the implicit assumption that m ~ I, the result is found 
to be valid still for m = l. 

Similarly, we get 

(2l + 1)(~ - i ~)H,,;(r) 
ax ay 

= (2l + l)(Sin 8 :r + co: 0 :0 + r S: o)H";(r) 'e-i'l' 

[(:r + l ~ 1)( cos 0 :0 + si: 0 + 1 sin 0) - (:r - ~)( cos 0 :0 + s:: 0 - (l + 1) sin 0) ]H";(r)e-;" 

[ - 1 _ ~ + 1 CR_ I - 1 ·sin 0iJ- 1- 1 ·iJm - 1 - l ~-;;, ffi l ·sin OiJ1·f}m_l ]H";(r)e-;'I' 

= i[(l + m)(l + m - l)H";::::(r) - (1 - m + l)(l - m + 2)H";::(r)], 

the result of which is verified for 111 = - 1 also. While the differential operator 

a .a a.a - + 1,- or - - 1,­
ax ay ax ay 

(3.7) 
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raises or lowers the order m of Helmholtz' solid 
harmonics, the operator a / az raises and lowers the 
degree l of them. 

(2l + 1) :z H";(r) 

= (2l + 1)( cos 0 :r - si~ 0 :o)H";(r) 

= [<Rz·sin Ot'Jz - <R-1-1 ·sin Ot'J_z-dH";(r) 

= i[(l - m + l)H;'+I(r) + (l + m)H;'_I(r)]. (3.8) 

The recurrence formulas (3.6) to (3.8) are valid 
even for negative m. 

The formula (3.6) with both m and l replaced by 
m - 1 reads: 

H:(r) = -i(2m - l)(:x + i :y)H:=:(r) , m;::: 0 

= (-i)"'(2m - I)!! (:x + i :ytho(r) , (3.9) 

and the formula (3.7) with m replaced by -m + 1 
and l replaced by m - 1 becomes 

H-m() i (a .a)H-m+1() 
m r = 2m ax - ~ ay m-l r, m;::: 0 

(3.10) 

i
m (a . a)'" 

= (2m)!! ax - ~ ay ho(r). 

The formulas (3.2) and (3.3) result from (3.9) and 
(3.10) combined with the following relations: 

H";(r) = (2m ~ I)!! pjm) ( -i :JH:(r), m;::: 0, 

(3.11) 

H - m() = (2 )" (l - m)! p<"')(_ . ~)H-"'( ) 
1 r m··(l+m)! 1 ~az '" r, 

m ;::: 0, (3.12) 

which may be proved by induction due to the re­
currence formula (3.8). 

The recurrence formulas (3.4) guarantee that the 
formulas (3.6) to (3.12) are valid also for J;'(r) in 
place of H";(r). 

4. ADDITION THEOREMS FOR HELMHOLTZ' 
SOLID HARMONICS 

Here, we are concerned with the transformation of 
Helmholtz' solid harmonics under translation of the 
system of reference. Let a displacement of the origin 

be d = 00' and choose it as the direction of the 
common polar axis, viz. z axis. Write r' = 

FIG. 2. The translation OC)' of the system 
of reference. 

(r', cos-1 J,L', <p') for the polar coordinates of P re­
ferred to the new origin 0'. See Fig. 2. 

Since the Helmholtz equation remains invariant 
under any translation of the Cartesian system of 
reference, Helmholtz' solid harmonics around 0 
should be written in terms of those around 0', and 
vice versa. Transformation formulas of such kind are 
called addition theorems. 

The addition theorems for Helmholtz' solid har­
monics are as follows: 

J";(r) 1 
H";(r) = (l + m)! f (2n + 1) 

J (l- m)!n_I",1 

H";(r) 

{ 

Jz.."'(rI) r:'(r') 

X Jz.."'(d)H";.(r') , 

H~n"'(rI) J";.(r') , 

d < r', 

d > r', 

J,,;(r,)} 
H";(r') = (_)1 (l + m)! f (-r(2n + 1) 

(l- m)!n_I"'1 

H";(r') 

f J~n"'(rI)J";.(r) 
X lJ~nm(rI)H";.(r), 

H~n"'(d).r:.(r) 

d < r, 

d > r, 

where m can be a negative integer and 

J;'n(x) = ~ i: dJ,L e;P·'P";(J,L)P";.(J,L) 

I+n 
L: ik(2k + l)c;;',Jk(x) , 

k-IZ-nl 

Z+n 
H;';.(x) = L: ik(2k + l)c;;'znhk(x). 

k-I !-nl 

Here, the coefficient c;;'Zn is given by 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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and hence it vanishes in either cases where k > 
1 + n, 1 > n + k, n > k + l, JmJ > l, or JmJ > n. 

The formulas (4.1) and (4.2), when written for 
J~(ar) and J~(ar') both multiplied by (2l + 1)!! 

(ia)-' and for H~(ar) and H~(ar/) both multiplied 
by -(-ia)l+lj(2l - 1)!!, degenerate into addition 
theorems for spherical solid harmonics7 as a tends 
to zero: 

(4.5) 

rllp";(J.I./) = t (_)I-.. (ll ~ m)d'-VP':(J.I.), 
.. _1 .. 1 n 

1 

{

t (n -=- ml ) ~:: P':(J.I.) , d < r, 
__ p"( ') _ .. _I n r 
'1+1 1 J.I. -

r (_)1_ .. t (n++ 1) d,,:"1+1 P':(",), d > r, 
.. -Iml n m 

(4.6) 

where the factors e· .... and e'''''' are omitted on both 
sides for brevity. 

In the process of derivation of (4.5) and (4.6) from 
(4.1) and (4.2), spherical Bessel and Hankel func­
tions have been replaced by their leading terms, 
(2.12), and it is useful to notice that 

.. _ (l + »1-)! (2n - I)!! (21- 2n - 1) !! 
C'-n',,- (2l+1)!!(l-n)!(n-m)! ,1~n, 

which is given in (6.21). 
A straightforward proof of the formulas (4.1) for 

m ~ 0 is given by applying (3.2). Let us consider 
the addition t.heorems for spherical waves in the 
forms 

d < r', 

P k(X)P~") (x) 

"(2 + 1) (n - m)! .. p<m) ( ) = L.. n (+) I Ckln" x, 
n n m. 

(4.7) 

which is known to be equivalent to (4.4) by multi­
plying both sides by (1 - x2)tm. The formulas 
(4.1), then, follow immediately. 

Similarly, by applying (3.3), it is known that the 
formulas (4.1) are also valid for negative m. The 
formulas (4.2) are proved to be direct consequences 
of (4.1) by considering the inversion about the origin 
o and by recalling that Helmholtz' solid harmonics 
J~(r) and H~(r) have the parity of l. 

5. BIPOLAR EXPANSION OF A SPHERICAL WAVE 

The addition theorems for Helmholtz' solid har­
monics facilitate the expansion of an outgoing spher­
ical wave around two centers. Applying (2.17), we 
have 

d > r'. p'(!"'.I'~ 'P') 

Apply to the both sides the differential operator 

(_~)m(.!. + i .!.)mp<m)(_i £...) 
ax ay 1 az' 

which is an invariant for translation of the reference 0 
system, and assume that the product of polynomials 
p:m) (x) and Pl(X) is expanded in the form 

FIG. 3. The system of reference for 
double expansion. 
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~ (- )1(21 + 1) .. t, (_ )m{H,,;(r)J~m(~'), 
J";(r)H~m(oP') , 

r > OP', 

r < OP', 

of which J~"(OP') and H~m(oP') can be expanded in series of Helmholtz' solid harmonics around 0' on 
account of (4.1). Thus we have 

exp (iPP/) 
iPP' 

i: i: (-)'(21 + 1)(2n + 1) (I - m)! 
1-0 .. -0 (I + m)! 

II.nJ f
H";(r) J-;.mCr') J';..(d) , 

X m-Jt.nJ (-)m1J,,;(r)H-;.m(r')J~,,(d), 
J'7(r)J-;.m(r')H~,,(d) , 

(I) !XI [l."1 

L: L: i n- ' (21 + 1)(2n + 1) L: E",P'7(P.)P";.Cp.') cos [m(<p - <p')] 
1-0 .... -0 ffl=O 

Jh,(r)jn(r')J~ .. m(d) , 

X li,(r)hn(1")J~ .. m(d), 

~,(r)i .. (r')H~ .. m(d) , 

r > OP', 

r < OP', r' > d, 

l' < OP', r' < d, 

r > OP', 

l' < OP', r' > d, 

r < OP', r' < d, 

(5.1) 

where Em is Neumann's factor, JI";.(x) and H,";.(x) are the functions defined by (4.3) and can be expressed in 
the following forms, as shown in Sec. 6.1: 

J'[',.(X)r' = i'+n It I (_)h (I + m)! (n + m)! (2h - I)!! \ {il+n-h(X) , (5.2) 

H "'() h-Iml (l-h)!(n-h)!(h+m)!(h-m)!x h () 
In X l+n-h X • 

By replacing r, 1", and d by i1', il", and id, respectively, in (:i.1) and (;,).2), and by noticing that 

J~nm(ix) = (-)'+nI~n(x), 

H~nm(ix) = (_)I+"+IK~nCx), 

we attain the formula (1.1). 

(5.3) 

If we reverse the order of the procedure and expand the outgoing spherical wave first around 0' according 
to the formula 

ho(PP') = ~ (- )"(2n + 1) ",tn (_ )"'{H-;.mcr')J";.(O'P) ' 

J-;.m(r')H";.(O'P) , 

then we have, by m;ing (4.2), 

exp (iPP') 
iPP' 

i: i: (_)1(21 + 1)(2n + 1) (I - m); 
1-0 .. -0 (l + m). 

fJ,,;(r)H-;''''(r')J~n(d) , [i.n} 

X m-~."l (-)miH";(r) J-;.m(r') J';..(d) , 

lJ";(r) J-;' "'(r') H7'n(d) , 

1" > O'P, 

r' < O'P, 

1" > O'P, 

r' < O'P, l' > d, 

1" < O'P, r < d, 

which can also be obtained directly from (5.1) by considering the inversion of the reference system. 

6. THE FUNCTIONS Ji .. ex) AND Hinex) 

(5.4) 

In this section, the functions JI";.(x) and H,";.(x) are studied in detail, since they are key functions in the 
paper as seen from the formulas (4.1), (5.1), and (8.3), the last of which gives a new method for evaluating 
two-center integrals. 
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We have three methods for calculating .I t~ (x): 

(1) Expansion formulas: 

.J';'n(x)} = il+n lEI (_)h (l + m)! (n + m)! (2h - I)!! \ {il+n-,,(X)' (6.1) 

H
m() h-Iml (l-h)!(n-h)!(h+m)!(h-m)!x h () 
I"X l+n-hX, 

(2) Expansion formulas: 

J'{',.(X)} = I: ik(2k + I)C~"{ ik(X) , 
H'{',.(x) k-I!-tal hk(x). 

(6.2) 

The coeffieient Ck/~ is given in forms of finite series: 

m ().-I 0!k!(20-2k)!(l+m)! 
CkI .. = - (20 + I)! (0 - k)! (0 - l)! (0 - n)! (l - m)! 

~ I (n + m + t)! (l + k - m - t)! 
X -7-' (-) . (l - k + m + t)! t!' (n - m - t)! (k - t)! 

(6.3) 

= (_y k! (l + m)! (n + m)! (20 - 2k - I)!! (20 - 2l - I)!! (20 - 2n - I)!! 
(20 + I)!! . 

( -)' 
X ~ (8 - l)! (8 - n)! (8 - k + m)! (l + n - m - 8)! (k + l - 8)! (k + n - 8)! 

(6.4) 

.-k g! (l + m)! (n + m)! ~ (-)h(2h)! (20 - 2h)! 
= (-) (2g + I)! (g - k)! 7' (l - h)! (n - h)! (0 - h)! (h + m)! (h - m)! (h - g + k)! ' 

(6.5) 

where g = Hk + l + n) and Ckl~ vanishes when k + l + n is odd. The summations in (6.3) to (6.5) are taken 
over all integral values of t, s, h for which the factorials are meaningful under the conventions: 

lin! = 0, for n < 0, O! = OJ! = (-I)!! = 1. 

(;3) Recurr("Jl("c formulas: 

J';' .. +l(X) = (n - m)(n + m + I).J';' .. (x) 

_ . I (n + m) (n + m + I).Jm () _ (n - m) (n - m + 1) Jm () ] 
~xL 2n+l l,n-1 X 2n+I 1,,,+1 X 

(6.6) 
= (l - m)(l + m + I).J'{',.(x) 

_ . [Cl + m)(l + m + I).Jm () _ (l - m)(l - m + 1) Jm ()l 
~x 2l + 1 I-I," X 2l + 1 1+1. .. X J ' 

2l ~ 1 [(l - m + l).J';'+l, .. (x) + (l + m).J';'_l, .. (X)] 

2n ~ 1 [en - m + I).J';', .. +l(X) + (n + m).J;n, .. _l(X»). (6.7) 

The same formulas are also valid for H";n(x)'s. The first subsection, 6.1, gives a method for deriving the for­
mula (6.1). The formulas (6.3) to (6.5) are proved in Sec. 6.2, where some of recurrence relations for C;'I .. are 
given also. Following the subsection 6.:3, where the recurrence formulas (6.6) and (6.7) are derived, an 
interesting property of the fUllction J/~(X) is discussed in Sec. 6.4. 

6.1. Derivation of the Formulas (6.1) 

We make usc of Gegenbauer's addition theorems9 for spherical Bessel functions in the forms 

il(lr - r/l)l fih(r)ih(rl)l 
Ir - r'll ~ 

hl(lr - r/l) J = (rr') I t; (2h + I)lih(r)hh(rl)JPlll(r V r/), 

hl(lr - r/l) hh(r)ih(r/) 

r < r', (6.8) 

r > r', 
• G. N. Watson, A Treatise on the Theory of Bessel F1tnctions (Cambridge University Press, New York, 1944). 
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where r V r' denotes the cosine of the angle 
spanned by rand r' both referred to the same origin, 
and Pill (x) is defined by (2.2). A useful comment 
on it is that 

pil)(-x) = (_)k-IPiZ>(x). 

We introduce here two sorts of integral operations; 
one is the spherical average around the center 0 
after multiplication by P~(J.L) exp (-imcp), cf. Fig. 3: 

11 12r 
S~m == (411r l dJ.L dcp P~(J.L) exp (-imcp) X, 

-I 0 

the other is the spherical average around the second 
center 0' after multiplication by r;(J.L') exp (imcp'): 

11 12'-
S~~ == (4nr 1 dJ.L dcp' P:(J.L') exp (imcp') X. 

-1 0 

Then we get 

~~[ho(PP')] = {in(r')hn(O'P)}P';:(<YP V 00') 
hnCr')inCO'P) 

X exp (imcp), r' < O'P, r' > O'P. 

After the spherical Bessel functions hn(O'P) and 
in(O'P) are expanded by using GBgenbauer's ad­
dition theorems (6.8), the addition theorem for 
spherical solid harmonics, (4.6), can be applied to 

~ ~ 

O,pnp:(O'P V 00'). 
If we confine ourselves to the case where r + 

r' < d for the moment, we get 

S~m[S~~ho(PP')] = in( -r')JHzn(r, d), 

where 

1 ~ k(n + m)(r)k 
J H zir, d) = 2rn f::r, ( - ) n - k d 

k+Z-1l 

X L (2h + l)b';.~zih(r)hh(d), (6.9) 
h-O 

which is to be understood to vanish in either case 
where h < n, k < Iml, or l < Inl. 

When the order of performance of the spherical 
averages are reversed, we have 

where JHnZ( -r', d) stands for an expression derived 
from JH In(r, d), (6.9), by replacing r by -r' after 
exchanging land n. As the results of the spherical 
averages should coincide with each other, we obtain 
an identity 

r + r' < d. 

The value of the identity has been denoted by F(d), 
since it can depend neither on r nor on r' . 

A simplified expression for F(d) is obtained by 
making r tend to zero and by replacing spherical 
Bessel functions by their leading terms: 

F(d) = (2l+ I)!! ±(_/(n+ m) 
2 k-O n - k 

X 
2l + 2n - 2k + 1 bnZ+n-t hz+n-t(d) . 

(2l + 2n - 2k + I)!! ",kl dt 

The coefficient b~kl' (6.10), is integrated out for 
h = l + n - k: 

bnZ+n-k = (_)'" (l + m)! 11 d p<-m)( )p<m)( )p<nl () 
",kZ (l _ )' J.L Z J.L k J.L Z+t.-k J.L m. -1 

( ) z (l + m)! fl ( 2 )z(d )I-m[p<m)( )p<n) ()] 
= - (2l)!! (l _ m)! -1 dw J.L - 1 dJ.L k IJ. Ih-k J.L 

= (l + m)! (2k - I)!! (2l + 2n - 2k - I)!! 11 d (1 _ 2)Z 
(2l)!! (k - m)! (l - k)! -1 IJ. IJ. 

=2.(l+m)!(2k-1)!!(2l+2n-2k-1)!! h 11<k<l 
(2l + I)!! (k - m)l (l _ k)! ' w en m - -, 

= 0, otherwise. (6.11) 

Thus we find a simplified expression: 

(1 ... 1 k (l + m)! (n + m)! (2k - 1)1! 1 
F(d) = k~1 (-) (l - k)! (n - k)! (k + m)! (k - m)! dk hlh-t(d). (6.12) 
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If we use the bipolar expansion (5.1) for ho(PP') in 
S~m[S:~hO(PP/)], we obtain a relation 

(6.13) 

In the case where r' + d < r or r + d < r', the results 
of the successive spherical averages are given as 
follows: 

S~m[S~~ho(PP')l 

{
jn( -r')H J In(r, d), 

= (-)"'hn(r')JJ,n(r, d), 

r' + d < r, 

r+d<r', 

S~~[S~mho(PP')] = {~I(r)JJnl(r:, -d), r' + d < r, 

],(r)HJn,(r ,-d), r + d < r'. 

Here HJ,,,(r, d) is an expression obtained from 
JH,,,(r, d), (6.9), by exchanging two spherical Bessel 
functions jA and hA' and J J1n(r, d) is that obtained 
from JH,n(r, d) by replacing hh by jh' 

Again, comparison leads us to the identities 

HJ,n(r, ti) = JJ"I(r', ,-d) == G(d) 
h,(r) in( -r ) , r' + d < r, 

JJln(r, d) = HJn,(r', -d) == H(d) 
jl(r) (- rhn(r') , 

r+d<r'. 

By letting r' ~ 0 in G(d), and r ~ 0 in H(d), it is 
known that G(d) coincides with H(d) and is given by 

11.") 

G(r!) = H(r!) = 1: (-/ 
k-Iml 

(I + m)! (n + m)! (2k - I)!! 1. 
X (I - k)! (n - k)! (k + m)! (k - m)! d k JI+n-k(d). 

(6.14) 

We can find also the relations 

by substituting the bipolar expansion (5.1) for 
ho(PP') in S~m[S:~ho(PP')l. The formulas (6.1) are 
an immediate result of the combination of (6.13) 
with (6.12) and of (6.15) with (6.14). 

6.2. Properties of the Coefficient Ckl .. 

Next, we derive useful formulas for the coefficient 

c:".: 

(6.3) is a special form of Gaunt's formula10 

[I d P"( )P'"( )P'+W( ) = (_)"-1-, 2.g! (k + v)! (I + w)! (I + n - k)! 
J -I !J. k!J. I!J. .. !J. (2g + I)! (g - k)! (g - I)! (g - n)! (I - w)! 

X 1: t (I + k - v - w - t)! (n + v + w + t)! 
, (-) (I - k + v + w + t)! (n - v - w - t)! (k - v - t)! tt' 

(6.16) 

The integral vanishes except when the sum k + 
l + n is even and k, l, n obey the triangular relation: 

l+n~k~ Il-n\, l+k~n, k+l+n=2g. 

In order to pass from (6.3) to (6.4) which has a 
symmetrical form with respect to I and n, the fol­
lowing identity is used most conveniently: 

a! L (a-b)!(a-c)! 
b!c! = .. (a-b-u)!(a-c-u)!(b+c-a+u)!u! 

a ~ b, a ~ c. (6.17) 

This is a special form of the addition theorem for 
binomial coefficients: 

(6.18) 

where x, y, n are natural numbers such that x + 
y ~ n, or Vandermonde's theoremll 

t (n)x(x - 1) .. , (x - 8 + 1) .-0 8 

X y(y - 1) .. , (y - n + 8 + 1) 

= (x + y)(x + y - 1) .. , (x + y - n + 1), 
(6.19) 

which is valid for any complex numbers x and y with 
the understanding that 

x(x - 1) .,. (x - 8 + 1) 

= rex + 1) jr(x - 8 + 1) 

as long as n is an integer. 
Applying (6.17) to each of the fractional factors 

10 J. A. Gaunt, Phil. Trans. Roy. Soc. (London) A228, 11 For example, G. Chrystal, Text Book of Algebra II 
194 (1929). (A. and C. Black, Ltd., London, 1900), 2nd ed., p. 9. 
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under the summation symbol in (6.3), we get 

C;z = (_)"-1 g! k! (2g - 2k)! (2g - 2l)! (2g - 2n)! (l + m)! en + m)! 
" (2g + 1) I (g - k) I (g - l) I (g - n)! 

L: (-)' 
x '.u .• (k+n - l-u)! (n + m-u)! (- k + l-n + t+u)! u! (k + I-n-v)! (l- m-v)! (n-l- t+v)! vr' 

The triple sum over t, U, v reduces to a single one 

L: (_)k-l+n-u 1 
u (k + n - I - u)! (n + m - u)! u! (u + 1 - n)! (u + 1 - m - k)! (k - u)! 

on account of the identity 

(-)' a 

~ (t - a)! (b - t)! = (-) On,b' 

Thus, by replacing the running number u by k + 
n - 8, we have (6.4). 

Now we turn to the derivation of (6.5). Expand 
the function x-hjz+n_h(X) in (6.1) into a series of 
jk(X)'S by an identity 

X (k + 1 - h - I)!I (2k + I) . ( ) 
(k + I + h + 1) 1 1 Jk X , 

h S I, 

(6.20) 
where k runs in steps of two units. This is a gen­
eralized form of the first of the recurrence formulas 
(AI). Then, comparison of the result with (6.2) 
yields (6 .. 5) immediately by virtue of the orthogonal­
ity of it(r)'s: 

i~ dx jz(x)j .. (x) = 21 ~ 1 oz .. , 

which is shown in the Appendix, (A2). 
The series (6.3)-(6.5) are known to be summed up 

only in few cases: 

o (k + 1 + n)!! (k + I - n - I)!I (I + n - k - I)!! en + k - I - 1) II 
ckln=(k+l+n+l)!! (k+l-n)!! (l+n-k)!! (n+k-l)!! 

"' Cl+n,l,n 
()" (21)! (2n)! el + n)! (I + n)! 
- I! n! (l - m)! (n - m)! (21 + 2n + I)! ' 

m (2l - 2n)! (2n)! l! (l + m)! 
C,-n,l.n = (l - n)! (1 - n)!n! (2l + I)! (n - m)!' 1 ~ n, 

(6.21) 

n _ ( )~(k-l+n) (l + n)! (2n)! (k + 1 - n - I)!! 
CkZn - - (l - n)! (k + 1 + n + I)!! (l - k + n)!! (k + n - l)!! ' 

9 ()k g!(l+g)l(n+g)1 
CkZn = - (2g + I)! k! (g - k)! (1 - g)! (n - g)! ' 

l,n 2:: g, 

1 (l + m)! 
OZ,n 2l + 1 (1- m)! '" COl n = 

The first is given in Hobson's monograph7 and is 
tabulated for g S 4 in Table I in the Appendix. The 
second is obtained by taking k l + n in (6.3), 
the third and the fourth result from (6.4) by putting 
k = l - nand m = n < l, respectively. The second 
expression is obtained also from (6.5) by comparing 
it with the identity (1.5). The fourth and the fifth 

come from (6.5), and the last is a trivial case where 
all the series in (6.3) to (6.5) degenerate into a single 
term. 

Other special values of the coefficient CZ'ln are 
obtained by expanding the product P";(Il)P':CIl) in 
a polynomial with descending powers of #1-, which is 
obtained by (2.2). The first three terms are 
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(- )"(1 - m)! (n - m)! P7(p.)P";'(p.) = (2l - I)!! (2n - I)!! p.l+n - 2~! (2l - 3)!! (2n - 3)!! (l + n - 1) 

X [(2ln - 1 - n) + 2m2]p.I+n-2 + 4~! (2l - 5)!! (2n - 5)!! (l + n - 2)(l + n - 3) 

X [In(ln - 2l - 2n + 2) + (2ln - 3l - 3n + 2)m2 + m4]p.I+"-4 + (6.22) 

from which we have 

.. m (2l-1)!!(2n-1)!!(l+n)! 
Cl+,.,I, .. = (-) (l - m)! (n - m)! (2l + 2n + I)!! ' 

... m (2l - 3)!! (2n - 3)!! (l + n - I)! 2 
CI+,.-2,1.,. = (-) (l _ m)! (n _ m)! (2l + 2n _ I)!! [In - (2l + 2n - 1)m], (6,23) 

... m (2l - fj)!! (2n - 5)!! (l + n - 2)! 
CI+,.-4,l, .. = (-) 2!! (l - m)! (n - m)! (2l + 2n - 3)!! 

X [3ln(l - 1)(n - 1) + (2l + 2n - 3)(6ln + 4l + 4n - 1)m2 + (2l + 2n - 3)(2l + 2n - 5)m4], 

on account of the formula 

for n 2:: k, 
(6.24) 

for k > n. 

The first of (6.23) coincides with the second of (6.21). 
Some recurrence relations for C;;'ln are listed below: 

k+1 m + k m I-m+1m +l+m", 
2k + 1 Ck+l,l,.. 2k + 1 Ck-I,I,,. = 2l + 1 Ck,I+I,,. 2l + 1 Ck.I-I , .. 

(6.25) 

n-m+l", +n+m m 

= 2n + 1 Ck,I, .. +1 2n + 1 Ck,I, .. -I, 

(l + n - k)(l + n - k + 2)C;;'_2,I, .. = (k + 1 + n - l)(k + 1 + n + 1)C;;'ln 

- 2; ~ n1 
[(2l - 1)(l + m)c;;'-I,l-I.n - (2n - l)(n + m)c;;'-I,I, .. -IJ, (6.26) 

{

I ( m+1 "+1) (n + m)(n + m + 1) m (n - m)(n - m + 1) m 

21 + 1 Ck ,l+l,n - Ck.l-l,n 2n + 1 Ck,l, .. -I - 2n + 1 Ck,I,,.+I, 

1 ( ... +1 ... +1) (l + m)(l + m + 1) m (l - m)(l - m + 1) m 

2n + 1 Ck,I,n+1 - Ck,I,,.-1 = 2l + 1 Ck,I-I, .. - 2l + 1 Ck,l+I, .. , 

.. +1 m+1 n + m + 1 ( m m) 
C.k+I,I, .. - Ck-l.l, .. = n _ m Ck+I,I,n - Ck-l,I,,. 

+ ~: ! ~ [en + m)(n + m + l)c;;',I.n-l - (n - m)(n - m + I)c;;',I,,,+l] 

= 1 t m + 1 (C;;'+I.I,n - C;;'-I,I,n) 
-m 

+ ;~ : 11 [(l + m)(l + m + 1)c;;',1_1.,. - (l - m)(l - m + l)C;;'.I+l ... ]. 

(6.27) 

(6.28) 
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(6.25) and (6.27) are derived by considering the 
integrals 

and 

{I dl-' (1 - l-'~ipk(I-')P";(I-')p::+I(I-')' 
respectively, (6.26) is obtained directly from (6.5), 
and (6.28) results from (6.29). (6.26) may be used 
to obtain C7+11-2A.I ... by starting with C7+n.I ... given in 
(6.23). 

6.3. Recurrence Formulas (6.6) and (6.7) 

The calculation of the coefficients C;'I .. is a rather 
tedious work as seen in Sec. 6.2. One who is patient 
enough to work through the square root of numbers 
may also be referred to the monographsl2 on 
Clebsch-Gordon's and Racah's coefficients. He is, 
however, recommended to deal directly with the 
functions Jz":.(x) and Hz":.(x) in practical calculations. 
For the purpose, the recurrence formulas for Jt:.(x), 
(6.6), and (6.7), may be used most conveniently. 

The formulas (6.6) show a way of successive com­
putation of Jt:.(x), m > 0, from J~,,(x)'s: 

J~ .. (x) = L: ik(2k + l)c~l,Jk(x), 
k 

cf. (6.2), where C~I" is given by the first expression 
of (6.21). These J~ .. (x)'s could also be computed 
directly by using (6.7) from 

Jg .. (x) = ~"'j .. (x) 

and 

J~.(x) = [t"'j(2n + 1)][(n + l)j .. +l(x) - nj .. _I(x)] 

without appealing to the coefficient C~ln' The explicit 
forms of the functions J~ .. (x), l, n ::; 4, are given in 
Table II in the Appendix. 

The first of the formulas (6.6) is derived by notic­
ing the fact that 

fl dl-' ~ [ei~'Pl"')(I-')P~-"'-ll(I-')] = 0, 
-I vI-' 

where 

( _)"+1 (n + m + I)! [pCm)( )pC-m-ll( )] 
(n - m - I)! I 1-'.. I-' 

= P"'( )[(n + m)(n + m + 1) P'" ( ) 
1 I-' 2n + 1 .. -1 I-' 

_ (n - m) (n - m + 1) pm ( ) ] 
2n + 1 .. +1 I-' , 

12 A. R. Edmonds, Angular Momentum in Quantum 
Mechanics (Princeton University Press, Princeton, New 
Jersey, 1957); M. E. Rose, Elementary Theory of Angular 
Momentum (John Wiley & Sons, Inc., New York, 1957). 

and that 

P";(I) = 6 ... 0 , P";(-I) = (_)1 6 ... 0, 

The second equality of (6.6) is a consequence of 
the symmetry of Jt:.(x) with respect to land n. 
Each side of Eq. (6.7) can be shown to be equal to 

-i(djdx)J7 .. (x). 

6.4. Connection with the Delta Function 

It may be instructive to note here that an infinite 
matrix with J~ .. (x) as its (l, n) element has a con­
tinuous eigenvalue X extending from exp (-ix) to 
exp (ix) over the unit circle and that the eigenvalue 
problem is equivalent to solving an equation 

(e"" - X)fCJJ.) = 0, -1 ::; I-' ::; 1, x ~ 0, 

obeyed by a generalized function 1(1-'). 
We commence with the fact that normalized 

Ferrers' functions 

CPICJJ.) , 1 = m, m + 1, ... , 

where 

1 ~ m ~ 0, 

form a complete orthonormal system which spans 
the Hilbert space consisting all square integrable 
functions in the closed interval [-1, + 1]. In fact, 
we have Vitali's completeness theorem: 

Let us consider an infinite matrix J(x) with pa­
rameter x whose (l, n) element is given by 

{I dl-' e'''·CPI(I-')CP .. (I-') 

[ 
(l - m) I (n - m) IJi .. 

= (21 + .. I)(2n + 1) (1 + m)1 (n + m)1 Jl,,(x). 

Then, the closure property 
., 

L: CPI(X)'PI(I-') = 6(X - 1-') 
1-.. 

leads us to a relation 

J(x + y) = J(x) . J(y) , 

implying that 

J(O) = 1, J( -x) = [J(x)rt, 

and that J(x) is nonsingular. Since J(x) is nonsingu-
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lar, there exists uniquely the matrix L(x) such that 

J(x) = exp [L(x)], 

and that 

L(x + y) = L(x) + L(y) , 

implying that 

L(O) = 0 and L[(n/m)x] = (n/m)L(x) , 

for any pair of natural numbers nand m. Because 
of the continuity of J(x) and L(x) with respect to 
x, we deduce that 

L(x) = ixL, J(x) = exp [ixL], (6.29) 

where 

L = -iL(I). 

The (l, n) element of the matrix L is given by 

L I .. = El dw P.'PI(P.)'P,,(p.) 
(6.30) 

= (2l + 1)-1(2n + 1)-1[(n2 _ m2)1 

X 15 1 ... - 1 + (l2 - m2)1 15 1- 1 ... ], 

which is shown by expanding J(x) in terms of small 
x and considering the linear term in x. 

AB can readily be shown, the matrix L has a 
continuous eigenvalue h extending from -1 to + 1 
and its associated eigenvector is 

['P",(h) , 'Pm+l(h), ... ]. 

It is interesting to trace the passage from a discrete 
to a continuous spectrum pictorially by starting with 
an N-dimensional truncated matrix L(N) obtained 
from L by retaining the first N rows and N columns. 

For the sake of simplicity, we assume that m = 0 
in the following. Let L:~) be the (l, n) element of 
L(N): 

Ll:) = 11 dWIL'P,(P.)'P,,(p.); l,n = 0,1, '" ,N - 1, 
-I 

where 

'PI(P.) 

Then we have 
N-I I 

~ Ll:)'P.(h) = h'Pl(h) - 'PN(h) i
l 

dw P.'PI(P.)'PN(P.) 

= h'Pl(h), for l ~ N - 2 

N 
= A'PN-lX) - (4N2 _ 1)1 'PN(A) , 

for l = N - 1. 

It is seen that the spectrum of L (N) is constituted 
by zeros of the Legendre polynomial of degree N, 
say A~N), '" , A1N), and that the eigenvector associ­
ated with AkN

) is given by 

['Po(h!N», 'PI (h!N» , '" ,'PN-I (>-!Nl)] , 

its length amounting to the square root of 

!NPN_l(h!NI)p~l(h!N» , 

as seen from the Christoffel formula of summation: 

The distribution of N zeros of the Legendre 
polynomial P N (p.) is known to be governed by Brun's 
inequalities: 

[(k - t)/(N + t)]'II" < 8i < [k/(N + l)]'II" , 

where 

Hence, the angles 8 = COS-Ih corresponding to the 
eigenvalues h tend to be distributed everywhere 
dense over the semicircle with unit radius as N -4 co 

as shown in Fig. 4. 

FIG. 4. The distribution of the ~ 
zeros Ai(·) of Legendre polynomial ~ 
of order 4. The angles 8k = -1 .t t ./. 
cos-I Ai(·) corresponding to these 4 
zeros are also shown on a semicircle 8, 8. 
with unit radius. 9. a, 

, f", J (¥I )/+J J,Cr,J 1. 1\0* IIoJ J.' 

The eigenvector associated with the continuous 
spectrum of L is intimately connected with the 
delta function. Suppose we are given an eigenvalue 
problem such that 

(6.31) 

where (ao, ai, a2, ... ) is an eigenvector with eigen­
value h. By introducing a function 

the problem turns out to be equivalent to that of 
solving an integral equation 

k = 0, 1,2, 
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This means that 

{I dx <,0 (X) (X - A)j(X) = 0, 

for any test function <,O(x) which has a support in 
the open interval (-1, + 1) and has contiuuous 
derivatives of arbitrary order. Hence f(x) should 
obey an equation 

(x - >,)f(x) = 0, -1 .:::; x .:::; +1, (6.32) 

which implies that the generalized function f(x) is 
concentrated at the point x = A. Such a generalized 
function should be of the form of a linear combina­
tion of the delta function and its derivatives,13 viz. 

.. 
f(x) = L Ck O(k)(X - A) 

k-O 

with finite m. Further, it is seen that C1 C2 

. .. = C .. = 0, because 

{I dx<,O(x)(x - A) O(k)(X - A) = (_)kk<,O(k-l)(A) , 

which cannot vanish in general for k > 0. Thus 
we have the solution 

f(x) = o(x - A), 

which is unique except for a constant factor Co. 

At the same time, we have solved the original eigen­
value problem for L, (6.31), and obtained the eigen­
vector 

[<,00 (A) , <,01 (A), <,02 (A) , ... ] 

with the eigenvalue A extending continuously from 
-1 to +1. 

The above con:,;ideration applies also to a general 
function F(L) of L. Suppose an analytic function 
F(z) of z is given by a Taylor series 

Izl < r, 
n-O 

with r > 1 as its radius of convergence. Then F(L) 
may be defined, since the characteristic roots of 
L lie in the circle of convergence of F(z). The whole 
argument in the last paragraph holds for the matrix 
F(L) in place of L. Naturally, (6.32) has to be re­
placed by 

[F(~) - >']f(~) = 0, -1 .:::; ~ .:::; +1. (6.33) 

This has a nontrivial solution f(J.I.) only for such A 
that>, = F(~o) for some ~o in [-1, + 1]. The char­
acteristic solution i,'I given by 

13 I. M. Gel'fand and G. E. Schilow, Verallgemeinerte Funk­
tionen, I (VEB Deutscher Verlag der \Vissenschaften, Berlin, 
1960). 

j(~) = o(~ - ~o) 

with the characteri:,;tic value F(/.Lo), -1 .:::; /.Lo .:::; 1. 
The statement at the beginning of the section con­
cerns with th0 ease where 

-1':::;~0':::;1. 

7. METHOD OF DIVERGENT INTEGRALS 

So far, the deduction has been developed within 
the scope of the classical analysis except for that in 
Sec. 6.4. A short cut in the procedure can be made, 
however, if we do not hesitate to make use of diver­
gent integrals to be understood as generalized func­
tions. Concerning the theory of generalized functions 
as applied to differential operators, the reader may 
be referred to Hormander. 14 

Consider, as an example, an integral 

i'" dr r2iz(r)iz(kr) 

= lll·e- 1[o(k - 1) + o(k + 1)]. (7.1) 

Although it scarcely has any meaning in the classical 
analysis because of the divergence at r = CD, cf. 
(2.13), we may understand it as the generalized func­
tion given on the right. 

The proof follows from Sonine's integral15 

i'" dr·r"->.+IJx(r)Jikr) 

k"(1 - k2)~-"-1 

2X-"-lr(A - ~) , 
R(A - ~) > 0, (7.2) 

where (1 
given by 

e): denotes the discontinuous function 

(1 _ e): = {(I - e)', when 1 - e > 0, 

0, when 1 - e .:::; 0. 

The integral (7.2) is written in terms of spherical 
Bessel functions in the form 

1
'" kl(1 k2)A-I-l 

dr r1- X+2 • (r) . (kr) = 7r - + 
o Jx 11 2X- 1r(A - l) , 

(7.3) 

where l is a fixed positive integer. Since the general­
ized function (1 - e):-1 has simple poles with 
residues 

14 L. H6rmander, Linear Partial Differential Operator8 
(Springer-Verlag, Berlin, 1963). 

15 For example, I. N. Sneddon, Fourier Tran8jorm8 
(McGraw-Hill Book Company, Inc., New York, 1951). 
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at z = -n, n = 0, 1, 2, ... , and the gamma function 
r(z) has also simple poles with residues 

(-)"jn!, 

we have 

2Hk'(1 - k2)~-1-l I 2 

rCA _ l) -+k 8(1 - k), as A-+ l. 

. (ik(1 - ",:)ie-i .. ,t'PlWl> (k"'k)eiltr , 

_ .m (l - m)! (~_ . ~)"'P("'>(_·!.). () 
- ~ (l + m)! ax ~ ay I ~ az 10 r . 

The addition theorem (4.1) may also be derived 
readily from the inversion formula 

fer) = J dk exp (ikd) exp (t"kr')F(k), 

Applying, further, a general formula 

1 
8(j(x» = ~ If' (x,,) I 8(x - x .. ), 

where r = d + r', Fig. 2. In fact, substitution of 
(7.4) (7.6) yields 

which is valid for an infinitely differentiable function 
f(x) with only simple zeros at x = x .. , n = 1, 2, .... 
Then, the proof of (7.1) is completed. 

In virtue of the integral (7.1), the Fourier trans­
form of the Helmholtz' solid harmonic J";(r) is 
obtained immediately. In fact, defining the Fourier 
transform F(k) of a function fer) by 

F(k) = (211")-3 J dr exp (-ikr)f(r), (7.5) 

we have, for fer) = J";(r), 

F(k) = (211"2)-lP":Cl-lk)e' .... • 1'" dr r2Mr)jzCkr) 

° ~ k, 
(7.6) 

where (k, COS-1"'k, IPI;) is the polar coordinate cor­
responding to k. 

The differential operator (3.2) generating J";(r), 
m ~ 0, is obtained in the process of Fourier in-
version: 

J";(r) = (_~jm(411")-1 J dk k-1 8(k - 1) 

. [ik(1 - ",!)iei "'rpl">(k"'k)e'ltr 

= (-~j"'(~ + i ~)"'P("'>(-i !.)(41I")-1 
ax ay I az 

.1 dk k-1 8(k - l)eiltr 

= (-tjm(:x + i :J"'Plm
>( -i :z)Jo(r), 

where the second equality comes from the identity 

kr = k(l- ",:)t cos IPk·X + k(I-",~)t sin IPk·y + "'k·Z. 

Similarly, we have, for m ~ 0, 

J";(r) 

., 

X E (2n + 1)(-)"'J~(kr')p;m("'k) 
.. -Iml 

= t (2n + I)J;:'(r') ( _)"11 

d", e'/ldP';(",)P;-(",) 
.. -Iml -1 

= (l + m); t (2n + I)J~(r')J~,,"'(d). 
(l- m)."_lml 

8. DISCUSSION 

One of the most important applications of the 
bipolar expansion formula is the evaluation of two­
center integrals especially in quantum chemistry. 
The main advantage of the bipolar expansion for­
mula lies in the fact that it allows us to perform an­
gular integrations around two centers independently 
of radial integrations. 

Unfortunately, however, this is true only for the 
following three cases: 

(i) r < d and r' < d; 
(ii) r + d < r'; 

(iii) r' + d < r . 

For the overlapping case 

(iv) Ir - r'l < d < r + r/, 
'" or ",' integration cannot be done over the complete 
range -1 to + 1, as pointed out by Buehler and 
Hirschfelder.3 The trouble comes essentially from 
the presence of singularity of the screened (or usual) 
Coulomb potential e- aR /R in the overlapping region 
(iv). 

A remedy to surmount the difficulty is furnished 
by the method of Fourier transform. Let us consider 
a screened Coulomb integral with two centers 0 and 
0', as shown in Fig. 1, 

v = J dP J dP' pep) e;R p'(P') , (8.1) 
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where pep) and p' (P) are given density distributions 
around the centers 0 and 0', respectively, 

pep) = L: L: Plm(r)P";(p.)eim<p j 
I m (8.2) 

p'(P') = L: L: P~m(r')P";(p.')eim<p' • 
.. m 

Then, we can derive a formula 

v = 3211' L: L: L: ~ ... -I(_) .. (n - m)! 
I .. m (n + m)! 

X L" dk e ~ (lJ';';.(kcl)jP'm(k)jP~.-m(k), (8.3) 

where Jt:,(x) is the function defined by (4.3) and 
investigated in detail in Sec. 6 and 

jPlm(k)} = 1'" dr.r2j/(kr){Plm(r) 
jpf ... (k) 0 pf .. (r). 

(8.4) 

It is seen that the singularity of the screened Cou­
lomb potential has been integrated out in the for­
mula (8.3). The detail of the Fourier transform 
method has been published in Sec. 8 of Preprint 
No. 759 by the Quantum Chemistry Group, Uppsala 
University, Uppsala, Sweden, which is available on 
request. 
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TABLE I. Numerical values of the coefficients COil,,: 

cf. (6.21) , 
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1 
COll = "3 ' 

1 
C033 = "7 ' 

1 
C044 =g' 

{

I 
C066 = 11 ' 
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{
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TABLE II. Explicit forms of the functions JOln(X): 

1 1+ .. 

J~ .. (x) = 1-.1 dp. eiPZPI(p.)P .. (p.) = L: ik(2k + l)cu .. Mx) 
2 -1 k-II-.. , 

J In and jk stand for JOln(X) and ik(x), respectively; cf. (4.3), (6.29), and (6.30). 

J 00 = io, J 01 = i· il , J 02 = - i2 , J 03 = - i . ia, 

J 1. 2 . J .(2 . 3 .) J _ 1 l' ~ i + 18 j 
11 = "3 10 - "3 12, 12 = t '5 '1 - '5 '3 , 22 - '5 0 - 7 2 35 4, 

3 . + 4 . J .(9. 4. + 10 .) 
J13 = -7'2 7 14, 23 = t 35 11 - 15 '3 21 15 , 

1 . 4. + 18 . 100. J .( 4. + 5 .) 
J 33 = 7 10 - 21 12 77 14 - 231 16, 14 = t - "9 13 "9 16 , 

2 . + 20. 5. J .( 4. 2. + 20. 175 j ) 
J 24 = -7'2 7.11'4 -11 16, a4 = t '3-7 '1 -11 1a 7.13 '6 - 3.11.13 7 , 

1 100. 162. 5. 490. 
J 44 = "9;0 - 7.9.11 '2 + 7.11.13 '4 - 3'11 '6 + 9.11.13 J8' 

based on the recurrence formulas 
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Z ~n 
{

(2X + 1) ! ix(z) = jX-l(Z) + jX+l(Z), 

APPENDIX I 

Three tables are given here. Table I shows numer­
ical values of the coefficients C~ln' from which we 
could obtain the values of c:'ln according to the 
formulas (6.25) to (6.28). Table II gives explicit 
expressions for the functions J~n(x) with land n ::; 4. 
Those for Jt:.(x), m ~ 1, may be obtained using the 
formulas (6.6) to (6.7). Table III is a list of spherical 
Bessel, Neumann, and Hankel functions of lowest 
integral orders. 

APPENDIX n 
It may be of help to scientists working in the field 

to summarize useful theorems and formulas for 
spherical Bessel functions which are scattered in 
the literature. Since the collection of them is rather 
lengthy, it will be published as a Technical Note 
from the Quantum Chemistry Group, Uppsala, 
Sweden. 

In that Technical Note, the spherical Bessel func­
tion jx(z) of complex order X and with complex 
argument z is defined by 

(2X + 1) ! ix(z) = XjX-l(Z) - (X + 1)jA+l(z). 

The theory of spherical Bessel functions is not a 
special case of the theory of Bessel functions unless 
we confine ourselves to those of integral orders. They 
are logically equivalent to each other. 

Here, an elementary proof is given of the orthog­
onality of jl(x)'s: 

L: dt jl(t)j .. (t) = 2l ~ 1 1)1... (A2) 

Proof; Replace the jz's by their integral representa­
tions (2.6) and perform the t integration. Then the 
integral is written in the form 

Q.E.D. 



                                                                                                                                    

1860 

ioex) 

iaex) 

ioex) 

REIKICHI NOZA W A 

TABLE III. Spherical Bessel functions of integral order. 

sin x 
x 

sin x cos x 
=-r--x-' 

(3 1). 3 
3 - - sm x - 2 cos x, 
x x x 

(~~ - ~2) sin x - (~~ - ;) cos x, 

( 1°55 - 4~ + .!.) sin x _ (1045 _ 1~) cos x, 
x x x x x 

cos x 

x 

cos x sin x --r - -x-, 

(3 1) 3 . 
- 3 - - cos x - 2 sm x 

x x x' 

-(~~ - ~2) cos X - (~~ - ;) sin x, 

_ (1055 _ 4~ + .!.) cos x _ (1°45 _ 1~) sin x, 
x x x x x 

(
945 420 15) (945 105 1). 

- -6 - -4 +"2 cos x - -6 - -3 + - sm x, 
x x x x x x 

i iz 
= -;e , 

% -% e - e 
2x 

i1ex) = ~ (; - !2)e= + ~ (; + !2)e-=, 

koex) 
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Discrete Degenerate Representations of Noncompact Rotation Groups. I 

R. RACZKA*, N. LIMICt, AND J. NIEDERLEt 

International Atomic Energy Agency, International Center for Theoretical Physics, Trieste, Italy 
(Received 16 February 1966) 

The discrete most degenerate principal series of irreducible Hermitian representations of the Lie 
algebra of an arbitrary noncompact as well as compact rotation group 80(p, q) are derived. The 
properties of these representations are discussed and the explicit form of the corresponding harmonic 
functions is given. 

1. INTRODUCTION 

PROPERTIES of representations of a semisimple 
Lie group are closely related to the properties 

of its Cartan subgroup. That is, the number of 
different principal series of irreducible unitary rep­
resentations is equal to the number of nonisomor­
phic Cartan subgroups of a considered semisimple 
Lie groUp.1 Moreover, if a given Cartan subgroup is 
isomorphic to a direct product of a k-dimensional 
linear space and an r-dimensional torus, then there 
exists a corresponding series of irreducible unitary 
representations determined by k real numbers and 
T integers. 1 Hence, if a semisimple Lie group has 
a compact Cartan subgroup, then there exists a 
discrete principal series of irreducible unitary rep­
resentations characterized only by integers. 

The number N of nonisomorphic Cartan sub­
groups contained in an arbitrary noncompact rota­
tion group SO(p, q) is enumerated in Table I. 

We see that there is a discrete nondegenerate 
principal series of irreducible unitary representations 
in classes (i), (ii) , and (iii). However, we show 
that the most degenerate principal series exists even 
in the class (iv). Of course, besides the principal 
series, there also exist supplementary series, which 
we do not consider. Their existence is closely related 
to the existence of a double-point measure. 2 

The discrete principal series of irreducible unitary 
representations of the SO(p, q) group have been 
constructed only in special cases: for the Lorentz 
groups3 SO(2, 1) and SO(3, 1), for the SO(2, 2) 

* On leave of absence from Institute of Nuclear Research 
Warsaw. ' 

t On leave of absence from Institute Rudjer Boskovic 
Zagreb. ' 

t On leave of absence from Institute of Physics of the 
Czechoslovak Academy of Sciences, Prague. 

1 M. 1. Graev, Tr. Mosk. Mat. Obshch. 7, 335 (1958). 
s 1. M. Gel'fand and M. A. Naimark, Tr. Mat. lnst. Akad. 

Nauk. SSSR 36, (1950). 
8 V. Bargmann, Ann. ~ath. 48,568 (1947). For the 80(3,1) 

group see also M. A. Nalmark, Linear Representations of the 
Lorentz Group (Pergamon Press, Inc., New York, 1964). 

group,4 and for the de Sitter groups5 SO (4, 1) and 
SO(3, 2).6 In the present work, we consider the 
properties of the discrete most degenerate principal 
series of irreducible unitary single-valued repre­
sentations for an arbitrary SO(p, q) group.7 We 
restrict ourselves to the discrete most degenerate 
principal series of representations, since ,these rep­
resentations seem to be of great importance in 
quantum mechanics and in elementary-particle phys­
ics. 

The main idea behind our construction method 
of the most degenerate representations of SO(p, q) 
groups is explained in Sec. 2. In Sec. 3, the properties 
of the discrete most degenerate representations of 
SO(p, q) groups for p ~ q > 2 are discussed and 
the explicit form of harmonic functions is given. The 
properties of the discrete degenerate representations 
of the SO(p, 2) groups, p ~ 2, are considered in 
Sec. 4. It is shown that there are three principal 
series of discrete most degenerate representations in 
this case. Section 5 contains the construction of the 
discrete representations of the so-called Lorentz­
type groups, i.e., SO(p, 1) groups. In Sec. 6, the 
proof of irreducibility and unitarity of our represen­
tations are presented. In Sec. 7, properties of the 
derived discrete representations are discussed. Fi .. 
nally, in the Appendix, the most degenerate rep­
resentations of an arbitrary compact rotation group 
SO(p) is derived. 

'A. Kihlberg, Arkiv Fysik 30, 121 (1965). There is a 
lD:ethod of how to construct representations of a semisimple 
Lie group as long as the order of the group is not too high. 

6 L. H. Thomas, Ann. Math. 42,113 (1941); T. D. Newton, 
Ann. Math. 51, 730 (1950); J. Dixmier, Bull. Soc. Math. 
France 89, 9 (1961). . 

6 J. B. Ehrman( Proc. Cambridge Phil. Soc. 53, 290 (1957). 
7 In the followmg we speak about representations of the 

group80(p( q) on the Hil~ert space :Ie, although we derive only 
represen~atlOns of the Lie algebra <R of the considered group 
on definIte vector space .c, which is dense in the Hilberll 
space :Ie. However, in paper III of our series of articles it will 
be sho":ll that. our in~nitesimal representations induce the 
global IrredUCIble umtary representations of the group 
80(p, q). 

1861 
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2. DISCRETE MOST DEGENERATE 
REPRESENTATIONS OF SO(p, q) GROUPS 

Different principal series of irreducible unitary 
representations of a semisimple Lie group may be 
created, in the Hilbert space :JC(X), of functions with 
the domain X, a homogeneous space of the type 

X = GIGo, 

where Go is a closed subgroup of G. 2 

The number of independant invariant operators 
characterizing different irreducible representations 
by their eigenvalues is equal to the rank of the space 
X.

8
•

9
•
10 Consequently, the most degenerate rep­

resentations, determined by one invariant operator, 
are representations in the Hilbert space of functions 
whose domain is a homogeneous space of rank one. 

In a homogeneous space of rank one, the invariant 
operator is just the Laplace-Beltrami operator of 
the formll 

A(X) = W(X)r! 0 .. ga~(X)w(X)]! o~, (2.1) 

where g,,~(X) is the left-invariant metric tensor on 
X and u(X) = Idet [ga~(X»)I. 12 

If the metric tensor gafJ(X) on X is induced by 
the Cartan metric tensor gik in the Lie algebra R 
of the group G, then the Laplace-Beltrami operator 
A(X) is equal to the second-order Casimir operator 
Q2 = gikXiXk (see Chap. X, Sec. 7 of Ref. 9). Thus, 
the construction of most degenerate irreducible uni­
tary representations may be reduced to the fol­
lowing: 

(i) Construction of a convenient coordinate sys­
tem on X, in which the metric ten.'lor g",p(X) is 
diagonal. 

TABLE I. Nonisomorphic Cartan subgroups in SO(p, q). 

Compact 
Cartan 

Class p q N subgroup 

(i) even even ~[lnin (p, q)] + 1 yes 
(ii) even odd min (p, q) + 1 yes 
(iii) odd even min (p, q) + 1 yes 
(iv) odd odd irmin (p, q)] + 1 no 

8 I. M. Gel'fand, Transl. Am. Math. Soc., Ser. 2, 37, 31 
(1964). 

g S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962), Chap. X. 

10 I. M. Gel'fand and M. I. Graev, Tr. Mosk. Mat. Obshch. 
8, 321 (1959). 

11 In fact this theorem has been proved for the sEace X 
being Euclidean or s. global symmetric one of rank 1 (Ref. 9, 
Chap. X, §2). However, we may extend it on homogeneous 
spaces of rank 1 by using results of Gel'fand and Graev of 
Ref.lO. 

12 If no other indication is given, we employ the Einstein 
summation convention. 

(ii) Solution of the eigenvalue problem for the 
Laplace-Beltrami operator 

(iii) Proof of the irreducibility and unitarity of 
the representations related to a set of harmonic 
functions 1/1).. 

For homogeneous spaces X, we may take the 
quotient spaces GIGo with a compact or noncompact 
stability group Go. The homogeneous spaces of rank 
k with the compact stability group related to 
SO(p, q) groups are13 

Since the rank k of these Cartan symmetric spaces 
is equal to min(p, q), we may construct in these 
spaces the most degenerate representation only of 
the Lorentz-type groups SO(p, 1). For an arbitrary 
SO(p, q) group, we have to consider more general 
spaces of rank one. We may take these spaces 88 

homogeneous spaces of rank one of the following 
form: 

and 
X~+O-1 = SOo(P, q)/SOo(P - 1, q), 

X~+O-l = SOo(P, q)/SOo(P, q - 1), 
(2.2) 

where superscript p + q - 1 denotes the dimension 
of the space X~+.-l. 14 

3. DISCRETE MOST DEGENERATE 
REPRESENTATIONS OF SO(p, q) 

GROUPS (p ;:: q > 2) 

To choose a suitable coordinate system, we have 
to introduce some convenient model of the space 
X~+·-l in (2.2). This means that we have to intro­
duce a manifold, with the same dimension and the 
same stability group as X~+·-l itself and on which 
the group SO(p, q) acts transitively. 

For the space X~+·-l, such a model can be realized 
by the hyperboloid H: determined by the equation 

(X1)2 + ... + (x'? 

- (X"+1)2 _ •.• _ (X"+O)2 = 1. (3.1) 

As an appropriate model for the space X~+·-\ we 
take the hyperboloid H; defined by the equation 

(X1)2 + ... + (X·)2 

- (X·+1)2 _ .•. _ (X·+")2 = 1. (3.2) 

13 See Ref. 9, Chap. IX. SOo(a, b) denotes a component 
continuously connected with the identity of the group BO(a, b). 

14 Such spaces were classified by B. A. Rosenfeld, Dokl. 
Akad. Nauk SSSR 110, 23 (1956). 
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If we introduce internal coordinates n = {81, ... , 
0"+0-1} on the space H:(or H:) (which is imbedded 
in the flat Minkowski space MM), then the metric 
tensor ga~(H:) on the hyperboloid H: is induced by 
the metric tensor gab(M"'O) on the Minkowski space 
M"'o, and is defined as 

where a, b = 1, 2, ... , p + q and a, (:J = 1, 2, ... , 
p+q-l. 

Generally, we may choose a large number of 
different coordinate systems on the hyperboloid H: 
(or H!), in which the Laplace-Beltrami operator 
can be separated. However, as follows from our 
previous work,15 the most convenient coordinate 
system is the biharmonic one, because, in this sys­
tem, the maximal Abelian compact sub algebra of 
the considered SO(p, q) group is automatically con­
tained in the maximal set of commuting operators. 

for r = 1 X'I = cos l{!1, 

x'' = sin l{!1, 

for r> 1 x'' = x'" sin it, 

x,2r-l = cos q/ cos tJr
, 

x,2r = sin l{!r cos tJr
, 

and, if p is odd (p = 2r + 1), we first construct the 
x*', i = 1,2, ... , 2r, by using the above-mentioned 
method for p = 2r; we then obtain the corresponding 
x'\ k = 1, 2, .. , , 2r + 1, as 

x" = x*' sin tJr
+1, i = 1,2, ... ,2r, 

(3.7) 
X /2r

+l = cos tJr +1, tJHl E [0, 11"]. 

The recursion formulas for 1,1, q, even or odd, are 

and denoting 

{
a a 

la,.} == aci' atJ2 , 

The biharmonic coordinate system on the hyper­
boloid H: (3, 1) is constructed as follows: 

a/' = X,k cosh fJ, k = 1,2, ... ,p, 
fJ E [0, CD), 

X,,+I = 1,1 sinh fJ, l = 1, 2, ... , q, 
(3.4) 

where the form of the X'k and 1,1 depends on whether 
p and q are even or odd. We must distinguish four 
cases: 

(i) p = 2r; q = 28, 

(ii) p = 2r; q = 28 + 1, 
r,8 = 1,2, ...• 

(iii) p = 2r + 1; q = 28, (3.5) 

(iv) p = 2r + 1; q = 28 + 1, 

Then, if p is even (p = 2r), the corresponding 
X'k(k = 1, 2, ... , 2r) are given by the recursion 
formulas 

l{!1 E [0,211"), 

(3.6) 
i = 1,2, ... ,2r - 2, 

l{!' E [0,211"), i = 1,2, , r, 

tJk E [0, !11"], k = 2,3, , r, 

the same as those for X'k, p, even or odd, respectively, 
except that angles l{!', Di in X

,k are replaced by 
ci/, Ji. 

Choosing the parametrization n == {w, w, fJ} on 
the hyperboloid H: asl6 

w == {l{!\ '" ,l{!llpJ,tJ2, ,tJ1iPJ }, 

W == {~\ '" ,~I;ol, J,2, ... ,J,1;01}, 
(3.8) 

"y = 1, 2, ... ,p + q - 1, (3.9) 

we can calculate the metric tensor g"p(H:) as well as the Laplace-Beltrami operator A(H:). 
Since in all four cases of (3.5) the variables in the Laplace-Beltrami operator (2.1) are separated in the 

1& J. Niederle and R. Raczka, International Centre for Theoretical Physics, preprint IC/65/89 Trieste (1965). 
11 Here and elsewhere, we use brackets for indices defined as follows: ' 

{
!a if a = 2r {!a if a = 2r 

[!a] = {!a} == r = 1,2, .... 
!(a - 1) if a == 2r + 1 , l(a + 1) if a = 2r + 1 , 
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same way due to properties of the metric tensor (3.3), we can write the operator A(H:) in the form 

A(JP.) = -( osh"-l 0 inh·- 1 0)-1 ~ h"-l 0 inhQ- 1 0 i- + A(Sp-l) _ A(S·-l) (3.10) 
• c s dO cos s dO coshll (J sinh~ 0' 

where A(Sp-l)[A(Sa-l)1 is the Laplace-Beltrami operator of the rotation group SO(p)[SO(q)].17 If we rep­
resent the eigenfunctions of A(H:) as a product of the eigenfunctions of A(S"-l), A(SH), and a function 
1jI~('lol.l(.lol(0), we obtain the following equation: 

[ -(COShp- I (JsinhQ-I ot l .!!.. coshp- I OsinhQ- I O'!!.. 
dO dO 

_ l\ip,(l(iPl + p - 2) + l{t.la{hl + q - 2) - ] " 
. coshll 0 sinha 0 A ·1jI'1,IO,.CI 1'o,(0) = 0, (3.11) 

where l{ipl(lli"l + p - 2)[llt.,(1IiQ' + q - 2)] are 
eigenvalues of the operator A(S,,-I)(A(S·-I)] with 
lljp,[ll}.d the certain nonnegative integers for p > 2 
[q > 2]. 

A discrete series of representations exist if there 
exist solutions of (3.11), which are square integrable 
functions tf:(,'o"Clqlo,(O), (0) E (0, IX), with respect 
to the measure1

!! 

(0, IX), any two linearly independent solutions are 
also regular analytic in this interval.1

\) Since at the 
origin and at infinity the coefficients are singular, the 
solutions are not generally regular there, and we can 
easily find two essentially distinct behaviors of the 
solutions at the origin: "'~ '" OC (,1"1, 

dlJ (0) = cosh"-l (J·sinh·- l O·dO, (3.12) and at infinity: 

which is induced by the measure18 dlJ(O) on the hyper­
boloid H:: 

dIS (0) = [U(H:)]! dn 

(3.13) 

The left-invariant measure dlJ (w) is defined in 
(A8). Since the differential equation (3.11) has 
meromorphic coefficients regular in the interval 

"'~,2 ,...., exp [- t(P + q - 2) 

± ([!(p + q - 2)]2 - AlilO. 

The only satisfactory solution, i.e., the solution 
square-integrable with respect to our measure dlJ(8) 
(3.12), is the one that behaves like "'~(9) at the origin 
and like "'~(8) at infinity. It turns out that the 
solution of (3.11) with these properties is 

'2F1( -n + lltpl + P ; 2 , -n; 11\., + ~ ; tanh' 8) , 
where a nonnegative integer n is connected with llip" lliQ', and}.. by the condition that 2Fl be a 
polynomial, i.e., 

n = 0, 1,2, .... (3.14) 

From this restrictive condition, we can find that the discrete spectrum of the operator A(H:) is of the 
form16 

A = - L(L + p + q - 2), L = - {!(p + q - 4) I, - {t(P + q - 4) I + 1, 

where L = lltp) - 11;.) - q - 2n. 

(3.15) 

(3.16) 

Thus we have shown that there exist discrete most degenerate series of representations of an arbitrary 
SO(p, q) group (p ~ q > 2) on the Hilbert space xL(H:), i.e., on the space of square-integrable functions 

17 For more details, see the Appendix. 
1& The mellSure d}L(O) == [g(HP.)jl/2 dO is the Riemannian mellSure, which is left invariant under the action of SO(p, q) 

on Hp" See Ref. 9. 
18 E. L. Ince, Ordinary Differential Equation8 (Dover Publications, Inc., New York, 1956). 
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.,.}..l •.•••• lt~'.):..I •.•••• tt·,·'(W iiJ 8) with respect to the measure dp. (ll) (3.13) and with X given in (3.15). We ''-It···,-(P/_l.-l,···.·I./.) , , 
denote such a series of representations by DL(H:). 

The basis of the Hilbert space creL (H:) is formed by the orthonormal functions: 

(3.17) 

where 

(3.18) 

r r 

II . 2-. ( ") dJi (2·ok) II . k . sm tJ· M/o;M/o' v' exp 'Lmkl{J , if p = 2r + 1, 
.-~ .-1 

are eigenfunctions of A(S,,-I) derived in the Appendix; y~;::::.l~;~;!! (00) are eigenfunctions of A(Sa-l) ex .... , 
pressed as the product of the usual d-functions of angular momenta and exponential functions exactly as 
(3.18), but respectively of variables rjI\ Ji, and lk' iiiz instead of 'P', "i, and l., ml; and V71.1>!.11.1.) is the solu­
tion of (3.11) given by 

V7,.I.!.1,o,.,(8) = (N-')·tanhtl
•I •

1 (8)·cosh-{L+"+~-2) (8) 

'2FI[!(P + q - 2 + l,iP) + l,!., + L), l(L + q + lll.) - llbl); 11101 + !q; tanh2 8], (3.19) 

where, for a definite representation, L is fixed and 'li,," 11101 are restricted by the condition that 2Fl be a," 
polynomial, i.e., 

l'iPI - 11;.1 = L + q + 2n, 

N" NHI, N are normalization factors given by 

n = 0, 1,2, .... (3.20)' 

, r 

NT = 211"' II (l/o + k - I)-I, Nr+1 = 411"'[2(1'+1 + r) - lr1 II (llc + k - 1)-1, (3.21), .-2 

and the indices J k , M k , M~ are defined as: 

J i = l(l. + k - 2), 

(3.23) 

M~ = l(m. - lk-l - k + 2), for k = 2,3, ... , r. 

J'+I = l,+1 + r - 1, Mr+l = IT + r - 1, 

li' k = 2, ... , r + 1, are nonnegative integers, 
mk, k = 1, ... , r, are integers restricted as follows 
(See Appendix): 

Im21 + Imll = l2 - 2n2 , (3.24) 

Imal + lz = la - 2n3' ... , Im.1 + l'-1 = IT - 2n" 

nk = 0, 1, ... , {ilk}, 

l.,= l'+l - n.+ 1 , k = 2,3, ... ,r, 

nT+I = 0,1, ... ,1r+l' 

k-2 

(3.22) 

in (3.2). This series is obtained formally from the 
previous DL(H:) by exchanging p, l'bl for q, 111011 
respectively, and vice versa. The most degenerate 
representations DL(H:) created on XL(H!) are not 
unitarily equivalent except in the case p = q, when 
both Hilbert spaces coincide. 

Finally, we would like to mention that the rep­
resentations DL(H:) and DL(H:) are irreducible and 
unitary, as will be proved in Sec. 6. 

4. DISCRETE MOST DEGENERATE 
<REPRESENTATIONS OF SO(p, 2) 

GROUPS (p ;::: 2) 

For the de Sitter-type groups, SO(p, 2), the 
homogeneous spaces are 

and r..+1 
= SOo(p, 2)/SOo(P - 1,2), 

X~+1 = SOo(P, 2)/SOo(P, 1), 
(4.1) 

There exists also a discrete series of representations and can be represented, respectively, by hyperboloids 
DL(H:) on the Hilbert space JCL(H:) with H: given H; and H!. 
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The biharmonic coordinate system is introduced again in the same way as in Sec. 3. Hence, for the 
Laplace-Beltrami operator fl.(H!) we obtain 

fl.(H'l\ = - ( osh 8 inhp- 1 8)-1 ~ osh 8 inhp- 1 8 ~ + ( _t.2 8)-1 ~ _ fl.(SP-l) . 
'II} c s fl8 c s fl8 co=. (fli/) 2 sinh2 0 (4.2) 

The main difference with respect to the equation for fl.(H!) is rooted in the fact that instead of the 
operator fl.{S·-l), q > 2, appearing in equation (4.2), the operator fl.{Sl) = il/{iJii) 2, which has 
eigenvalues - (ml ? with m) an arbitrary integer appears. By using the same procedure as in Sec. 3, 
we finally obtain, for the function of 8, the equation: 

[ -(cosh 8 sinh"-l 8\-1 !l... cosh 8 sinh"-l 8!l... - (m1)2 + lllp){llb) + p - 2) - xJ.,.~ (8) = 0 (43) 
J d8 d8 cosh2 8 sinh2 8 'Ym,.I,./.,· . 

The discrete series of representations exist, again 
due to the fact that there exist solutions of (4.3) 
square integrable in 8 E (0, <Xl) with respect to the 
measure dp.(8) = sinh '1'-18· cosh 8·d8. 
I The discrete spectrum of the operator fl.(H!) looks 
like 

" = .. -L{L + p), 

L = -(!(p - 2)}, -(!(p - 2)} + 1, "', (4.4) 

where 

(4.5) 

In a definite representation, the value L is fixed 
and~Eq. (4.5) imposes the following restriction on 
Imll: 

Since generators of an SO{p, q) group can change 
the quantum number ml only by one (see Sec. 6), 
we create on 3CL (H!) two discrete unitarily non­
equivalent series of representations. The representa­
tion corresponding to ml 2:: L + P is denoted by 
D~ (H;) , and the other corresponding to ml ::; 

- (L + p) is denoted by D:(H!). 
The representations D~ (H!) are representations on 

different invariant subspaces of the Hilbert space 
3CL (H;), with basis formed by the following ortho­
normal functions 

y L.I •••••• I,.'.J I -1 8'\ 
tnl.···,mlp/.],nh\..CAJ'tp' J 

- ylo ..... I,.,.) I )[(2 )-1 .- -l]VL (8) 
- m ••• •• .... I.'.I\'" 11" exp ~ml'l' ;n •• 1(0'0) , 

(4.7) 

(4.6) where y~.:::::.I.!r~;!1 is given in (3.18) and 

VL (8) = (N-i) tanh"("')! 8'cosh-(L+p) 8 
;n,.1 (./oJ 

'2FI[!(- Imll + Il(tpd + L + p), !(lm1 1 + Il,tpd + L + p); Il(bd + w;tanh2 8], 

N _ rt(lm1 1 - Il'h>d - L - p + 2)r2 (1l'h>d + !p)r!(L - Il'bd + Imt! + 2) 
- 2(L + !p)rl(lm11 + Il(tp) + L + p)r!(lmll + Il(bd - L) , 

(4.8) 

where, for a definite representation, L is fixed and 
mh lit'll] are restricted by the condition that 2Fl 
be 80 polynomial, i.e., 

Iml\- Il(bJI = L + p + 2n, n = 0,1, .... (4.9) 

The discrete series of representations on the Hilbert 
space 3CL (H;) are constructed by the same method, 
but (except p = 2) we obtain only one series be­
cause now lib) plays the role of ml ; and, for p > 2, 
l(tp] is a nonnegative integer. For p = 2(ll = ml ), 

we find again two discrete unitarily nonequivalent 
series as both Hilbert spaces 3CL (H!) and 3CL (H;) 
coincide. 

5. DISCRETE MOST DEGENERATE 
REPRESENTATIONS OF socp, 1) GROUPS 

The homogeneous spaces of rank one for the 
Lorentz-type groups are 

and 
~ = SOo(P, 1)/SOo(p - 1, 1), 

X~ = SOo(P, 1)/SOo(p), 
(5.1) 

where the X~ space is the Cartan symmetric one. 
We take, respectively, the hyperboloids H~ and H! as 
their models. 

The biharmonic coordinates on ~ and H! are 
introduced again by the method explained in Sec. 
3, but, on the hyperboloid ~, the range of 8 is 
( - <Xl, <Xl). On the hyperboloid H!, the range of (J 



                                                                                                                                    

REPRESENTATIONS OF ROTATION GROUPS 1867 

is from zero to infinity since we restrict ourselves to 
the upper sheet of the hyperboloid H!. Of course, 
the upper sheet of H! is a transitive manifold only 
under the proper 80o(p, 1) group, i.e., under the 
group of transformations g = (g;k), for which gn is 
positive. 

The Laplace-Beltrami operator on the Hilbert 
space :re(Hn has the form 

-1 (J 1'-1 () a(sP-1
) 

a(lP0 = coshP-1 6 (J6 cosh 6 (J6 + cosh2 6 ' 

6 E (- <Xl, <Xl), (5.2) 

where a(8"-I) is the Laplace-Beltrami operator for 
the 80(p) group given in the Appendix. 

The eigenvalue problem of a(Hn is reduced to 

[ 
-1 d sh,,-l 6 d 

cosh" I 6 d6 co d6 

- l{bl(llt,,1 + p - 2) _ A ""'J1.,.).. (6\ = O. (5.3) 
cosh2 6 'Y1!./s) J 

Analogous to the previous cases, we find the dis­
crete spectrum of a(Hn to be of the form 

A = -L(L + p - 1), 

L = -/t(p - 3»), -{!(p - 3)1 + 1, "', (5.4) 

where 

(5.5) 

lliP' a positive integer for p > 2, and, for p = 2, 
an arbitrary nonzero integer, ml , Hence, there is an 
exceptional case for p = 2 and we again obtain two 
types of discrete unitarily nonequivalent series of 
representations D~(H~) and D:(H~) on different 
invariant subspaces of the Hilbert space :reL(HD. 
For 80(2, 1) and 80(3, 1) these results were obtained 
by Bargmann,3 and for 80(4, 1) by Dixmier.5 

The basis of the Hilbert space :reL(Hn is formed 
by the orthonormal functions 

J 
y L.Z ...... Zt.I.I( 6) - yz •..... II./.1 () V L (6) 'f L 1 = -(2n + 2), 

1 mil • .. ·.;n[pl.! W, - "'1, ... ·.m[p/.) W·l Z (p/_) ,1 - lip) 
yL.l. ••••• II.I.)/ 6) - (56) 

m, • .. ·.ml./.I ,W, - yL.I •••••• II.I.I( 6) = y' •••••• II.I.) ( ). V L (6) . 

l2 nih •• ·,11I("" .. J tJJ, m1.. ···~m[:p/.l W 2 l {tI'/_} , 

if L - 1"", = -(2n + 1), n = 0, 1,2, .. , , 

where y!::::::"~~~;!l (w) is explicitly given in Eq. (3.18) and 

1 Vft•, o,(6) = -2(IN-') tanh 6· cosh-<L+,,-ll 6'2Fl[!(L + l'ip, + p), !(L - 111p) + 2); !i tanh2 6]. 

2 V7IP/o ,(6) = (IN-i) cosh-<L+,,-ll (J'2FI[!(L + 11;,,1 + p - 1), !(L - lIb' + 1) iii tanh' 6]. (5.7) 

Here, the normalization factors IN, 2N are of the form 

IN = 211'{r[!(1 - L»)·r[!(l + L + p - I)]} {[2L + p - 1]·r[!(l + L + p)]·r[i(l- L + 1)J}-1 

2N = {1I'r[!(l'iPl - L + 1)]r[!(lli,,1 + L + p)]} 
(5.8) 

X {[L + !(p - l)]r[!(l!b>1 + L + p - l)]r[Hllbl - L)]}-1 

and, for a definite representation, L is fixed and 
1',,/21 must satisfy the restrictive condition that 2Fl 

be a polynomial, i.e., 

n = 0, 1,2, .... (5.9) 

The discrete series of representations on the Hil­
bert space :reL(H;) does not exist, because the La­
place-Beltrami operator 

a(H!) = _(sinh"-l 6rl ;6 sinh"-l 6 ;6 

_ ll;"l(ltiPl + p - 2) 
sinh2 6 

8 E [0, <Xl), has no discrete spectrum. 

6, IRREDUCmILITY AND UNITARITY 

The Lie algebra R of the group SO(p, q) can be 
expressed in the form of two types of operator~ with 
commutation relations: 

[LH' L,,]_ 

= - o;r L j • + Oil L 1r + Ojr L;. - OJ. Lin 

[Lij , B,.]_ 

= - Oir B j • - Oil B jr + Oir B i • + OJ. Bin (6.1) 

[BH' B .. J-
= Oir L j , + 0" L ir + 0ir L .. + Oil L ir , 

where L;i and B;; are, respectively, the generators 
of the compact and noncompact one-parameter 
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subgroups. We represent the Lie algebra R on the 
linear manifold .,c composed of the set of harmonic 
functions 

by the Lie algebra of operators: 

[ .(al(J!) ;(al(J!)] a 
L'f = x ax; - x ax' al(J! + 

[ 
.(aDI!"I) ;(aD

lbl
)] a + x ax; - x ax' aDI!'" ' (6.2) 

where i, j = 1,2, ... ,p and x!, ... ,x" are defined by 
(3.4). For the remaining operators Lif' i, j = p + 
1, p + 2, ... , p + q, we obtain analogous expres­
sions. The generators of the noncompact type are 
represented by: 

XiXf a 
B'f = sinh 0 cosh 0 ao 

.(al(J!) a ;(aD
lb

') a + x' ax' al(J! + ... + x ax' aDlbl 

,(aiP!) a .(aJl1o
') a + x ax; aiP! + ... + x ax; Wl!o,' (6.3) 

where i = 1, 2, .. , , p and j = p + 1, p + 2, ... , 
p + q. It turns out that the differential operators 
Ljf do not contain derivatives with respect to OJ 
and their coefficients depend, respectively, only on 
the parameters w or w of the corresponding subgroup. 
The differential operators Bij contain the derivative 
with respect to 0 and their coefficients generally 
depend on all of the parameters w, w, and O. 

r 
FIG. 1. 

A. Irreducibility 

To prove the irreducibility of our representations 
DL(H:) on the Hilbert space XL(H:), we show that 
there is no invariant subspace of the space XL(H:) 
with respect to the representation (6.2), (6.3) of 
the Lie algebra R. 

(a) The Case p 2': q > 2 

The Hilbert space XL (H:) has the structure 

XL(Wv) = L EEl Xfl.I.,.II.I.,(Wv), (6.4) 
11.1·1·/lr/'l 

where the sum is taken over all such nonnegative 
integers la,," llio" which satisfy lliP) - Ilh' - 2n = 
L + q, n = 0,1,2, .... 
Here the subs paces 

Xfl'I"./II/.,(H:) 

are the finite-dimensional spaces spanned by all 
the harmonic functions (3.17) with fixed values of 
pairs of integers lli"" 1110 " The representation (6.2) 
of the algebra of the maximal compact subgroup 
SO(p) X SO(q) is irreducible on the space 

Xfl.I.,.II.I.,(H:) 

(as is proved in the Appendix). The structure of 
the Hilbert space XL (H:) can be graphically il­
lustrated by use of nets. A characteristic detail of 
the net is drawn in Fig. 1. Every node of the net 
represents a subspace 

and every unit step in the net connects the two 
nearest neighboring subspaces. 

Thus, to prove that there is no invariant subspace 
of the space XL(H:) with respect to the operators 
in (6.2) and (6.3), it is sufficient to find one operator 
Bij and one element 

YL./I.I.,.II.I'J E 'ff)L (H") 
"'-/1.1.,.11.1.,0 

such that 

B yL.1 1.1.,. I 1.1., 
has nonvanishing components in four neighboring 
subspaces (see Fig. 1). 

Let us show that 

B YL./I.I.,.II.I.,(n) 
p,J)+<l -(p/l) ,mlllll) lUi 

has the desired properties if 

yL./I.I.,.fll/'J(O) == yL.I ...... /I.I.J..:.f .... ·:!I.I·J(O) 
"'(p/ll.fA[Q/I) ml.···.m[P/S].ml.···.mlfll.I' 

where m2 = ... = mIl,,] = m2 = ... = mIlo] = 0, 
and ml , l2' '" , lli"'-I' m" 12 , •• , , 1110 ,-1 have the 
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minimal possible values. Omitting indices {tp}, {tq} whenever such omission does not lead to misunder­
standing, we obtain the following expression: 

(By;:~,f)(n) = (l + 1 + L + P2t -/ -; 2)(1 + 1 - L) A+(l)A+(l)[N(l t(~: b + 1) TZL"+I"+1(O) 

+ (21 + q - 2)A+(l)A_(l)[N(l t(~: b - 1) TZL"+1"-I(O) 

_ (l- 1 + L + q)(l- 1 - L - P + 2) A (l)A (l)[N(l - 1, 1 + 1)]iZL"-I"+I(O) 
21 + q - + N(l, l) 

+ (21 + q - 2)A_(l)A_(l)[N(l ~(~: b - 1) TZL,I-1"-I(O), (6,5) 

where 

if P = 2r + 1, 
q = 28 + 1, 

if P = 2r, 
q = 28 + 1, 

_.lyL,I.,I,(n) + .lyL,I.,I,(n) + .lyL,Ir,I,(O) _ .lyL,I.,I,(O) 4 1,1 U 4 1,-1 U 4 -1,1 4 -1,-1 , if P = 2r, 
q = 28, 

Here N(lli"" 1(101) = Nib" Nit." N, where N lbl , 
N rt•h and N are defined by the expressions (3.21) 
and (3.22). Then, if p is even: 

p = 2r r = 2,3, 

A",(l'bl) == A .. (lr) 

r,8 = 1, 2, .... (6.6) 

(H:), but this does not mean that the representation 
is reducible on :reL (H:) as B is skew-symmetric on 
£, and ByL,L+.+2+21l,O and ByL.L+.+2n,O have non-

vanishing components in :ref U+1 +2,.,1 (H:). 
The proof of the irreducibility of the representa­

tion DL(H:) on the Hilbert space :reL(H:) is analo-
= C(J" t,Jr ± t, M r , t) ·C(J" t,Jr ± t, - M r , t); gous. 

(6.7) 
(b) The Ca8e p ~ q = 2 

and, if p is odd, then 

p=2r+l 

A",(lrtpl) == A .. (lr+l) 

r = 1,2, ... 

= C(Jr +l , 1, J r +1 ± 1, Mr+lI 0) 

·C(Jr+l , 1, J r +1 ± 1,0,0), (6.8) 

where the Clebsch-Gordan coefficients C(JI , l, J 2 , 

ml, m2) are taken from Ref. 20, and Jill"" Mlbl are 
defined by (3.23). 

Substituting the corresponding values of the con­
stants appearing in the expression (6.5), we check 
that no term vanishes if the corresponding values 
of integers llipI, 11101 satisfy ll!PI - ll}ol - 2n = 
L + q except in the case 1. = 1, lliPl = L + q + 
1 + 2n, where q are even. In that case ByL.L+O+l+2,..1 

has no components in :ref+0+21l,o(H:) and :ref+.+2+2n,o 

20 M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1961). 

The proof of irreducibility of the representation 
DL(H;) on the Hilbert space :reL(H;) is the same as 
in the previous case. 

The representation of the group SO(p, q) on the 
Hilbert space :reL (H!) reduces to two irreducible 
parts D~ (H!) on the subspaces 

:re~(H!) = L EEl :re~I;n,)"I'I'I(H!), 
where the sum is taken over all nonnegative integers 
Imll, lliPl such that Imll - llbl - 2n = L +p, 
n = 0, 1, 2, ... . The proof of the irreducibility of 
both representations D~ (H!) on :re~ (H!) is the same 
as in the previous case. The reducibility of the rep­
resentation on the space :reL(H!) = :re~(H!) EEl 
:re:(H!) can be easily understood from (4.6) and the 
fact that every operator B;; (6.3) maps the subspace 
:refc;n,) 1,11.1.1 (H!) only into those four subspaces 
:refW)(.I'I.I.I(H!) forwhichm{ - ml = ±1, If,.,.,­
lliPl = ±1. This follows from (6.1) and (6.5). 
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(c) The Case q = 1 

If p > 2, the structure of the Hilbert space 
:JCL(Hn is 

where the sum is taken over all nonnegative integers 
lli,,) = L + 1, L + 2, .... The irreducibility is 
proved as in the previous case using the operator 

B".l and the element (5.6) 

YL./IP/.)(O) == yL.I ...... /I.I.)("') 
1,2 -("/s) m1, •••• _III/_1 i1li, 

where m2 = ... = mil,,) = 0 and ml, 12, ••• , ll!,,)-l 
have minimal possible values. TheelementBY~·/I'I') 
has non-vanishing components in 

:JC~IP/.)U(m) 

as is expressible in the form 

(Bl yL,/)(O) = -2A+(l{ 2Nl~~ 1) TlZL.I+l(O) - 2A_(l{2Nl~(z) 1) T1ZL,I-I(0), 

(B2y~,/)(0) = - HL + 1 + p - l)(L - l)A+(l{IN2~~ 1)T2ZL,,+\0) 

(6.10) 

- !(L - 1 + l)(L + 1 + p - 2)A_(l)[ lN2~(z) 1) J\ZL.I-\O), (6.11) 

where 

1,2ZL ,/(0) = {1'2Y~'/(0), for p odd, 

(21.rl[1.2y~,/(0) - 1.2 Y:i /(0)], for p even. 
(6.12) 

Here 1.2N(l) = NI!P)·1.2N, where the constants 
N I!,,) and 1.2N are defined by the expressions (3.21) 
and (5.8). The nonvanishing feature of the coef­
ficients can be checked as before. 

If p = 2, there exist two irreducible representa­
tions D~ (HD on the spaces 

'" 
Je~(HD = L EB Je~, .. )(HD, 

Iml-L+l 

which can be proved as before. 

B. Unitarity 

The representation T. of a group element 
9 E SO(p, q) on the Hilbert space JeL(H:) is deter­
mined by the left-translation: 

(T Y L .1.", •• /1'/' 1.:.1" "'~I'/s) )(0) 
tI ml.···.1n[p/:!I).1nl.···.mlQ/'lfjj 

(6.13) 

then the representation of the corresponding Lie 
algebra given by (6.2) and (6.3). Here the symbol 
g-10 represents the set of parameters <p't, 
t?'lio), 0' of the point 0' = g-10 on H:, and 

Y L .1.,"',/1.1. ).:./, •••• :..r 1,1-) (n) 
tnl.·· ',1n(p/'} ,m!.··· ,tnt «/.) 

is a harmonic function defined in the expressions 
(3.17), (4.7), or (5.6). Therefore, the unitarity fol­
lows from the left-invariance of the measure dlL(n) 
on the corresponding hyperboloid H:. 

7. CONCLUSIONS 

We devote this section to a brief review and dis­
cussion of the derived representations DL(H:) of 
the group SO(p, q). 

A. The Case p :2:: q > 2 (Sec. 3) 

There exist two series of representations: DL(H:) 
and DL(H:), related respectively to hyperboloids 
H: (3.1) and H: (3.2). The nonnegative integers 
[I},,), llh), which determine respectively the irre­
ducible representations of the subgroup SO(p) and 
SO(q) are not independent as in the case of con­
tinuous most degenerate representations, but are 
restricted by 

lll,,) - llio) - 2n = L + q for w., 
lila) - lll,,) - 2n = L + p for H:, 

(7.1) 

(7.2) 

where 11!p), ll!o), and n range through every such 
triplet of nonnegative integers which satisfy (7.1) 
and (7.2). These two conditions are respectively 
illustrated graphically in Fig. 2 and Fig. 3. Every 
node of the net in the figures represents a subspace 
Jeflp/,I.II'I') of an irreducible representation of the 
maximal compact subgroup SO(p) X SO(q) deter­
mined by a pair of integers lib) and [Ih)' Generators 
Lii of the compact type act inside the subspace 
Jefl.I.I./lql.). On the other hand, the generator 
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B.. of the noncompact type maps the subspace 
Jerl>lol./I.lol into four neighboring subspaces 

L =L =L JeL Je I +1.I+l, "'-'1-1./+1, "'-'1+1./-1' 1-1./-1 

(graphically represented in Fig. 2). 
All the representations DL (H:) and DL (H:) are 

unitarily inequivalent except for p = q, where we 
have only one series of representations DL(H:). 

B. The Case p ~ q = 2 (Sec. 4) 

In general, there exist three series of representa­
tions. Before describing them, we wish to stress the 
fact that the irreducible representations of the sub­
group SO(2) are characterized by an integer nm1 , 

which also takes on negative values. Instead of the 
conditions (7.1) and (7.2), we have now 

Illbd - Imll - 2n = L + 2 for H;, 

Imll - Illbd - 2n = L + p for H!, 

(7.3) 

(7.4) 

where Ila .. d, Imd, and n range through all such 
nonnegative integers so that (7.3) and (7.4) are 
satisfied. It follows from these conditions and con­
clusions of Sec. 4 that there exists only one series 
of representations, DL(H;), related with the hyper­
boloid H;, while there exist two series of representa­
tions D; (H!) and D: (H!) related with the hyper­
boloid H!. Their graphical representations are given 
in Figs. 4, 5, and 6, respectively. The representations 
are unitarily inequivalent except for the case p = 
q = 2. In the latter case, two subgroups SO(2) of the 
group SO(2, 2) are indistinguishable, and we have 

FIG. 2. Representation DL(H:), p ~ q > 2. 

FIG. 3. Representation DL(H:), p ~ q > 2. 

only two unitarily inequivalent representations 
drawn in solid lines in Fig. 7. The representations 
appear after changing m1 and m. are equivalent to a 
pair of previous representations. We represent them 
by dotted lines in Fig. 7. 

C. The Case q = 1 (Sec. 4) 

In general, there exists only one series of discrete 
most degenerate representations DL(Hn. However, 
in the case of SO(2, 1), we have obtained two series 
of irreducible representations, i.e., D;(H~) and 

., .... -J -2 -1 0 I 2 J + 

FIG. 4. Representation DL(H~). 
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-(""p"'2) -(L.,.p) 
.., 
tIt, 

FIG. 5. Representation D::(H;). 

D:(HD. The condition on the number l(iPl' which 
determines the irreducible representations of the 
maximal compact subgroup SO(p) , has the form 

Il(l"fl = max (L + 1, 0) + n, 

n = 0,1,2, ... (7~) 

It is interesting that we have found the discrete 
most degenerate representations even for the groups 
SO(p, q) with odd p and q, which have no discrete 
nondegenerate principal series of representations (see 
Table I). Let us explain this unexpected fact, for ex­
ample, for the Lorentz group SO(3, 1). The action of 
two Casimir operators .:ll = M2 - N2 and .:l2 = 
M . N on the basis f~ of the Hilbert space, which 
realizes the irreducible representation, can be writ­
ten in the form 21: 

.:ld~ = -2(k~ + c2 
- l)f~, 

ko = 0, !, 1, !, ... , (7.6) 

.:l[SO(P, q)], 

FIG. 6. Representation D~(H;). 

c = ip, p E [0, (Xl). (7.7) 

If we take the hyperboloid H~ as the domain of the 
functions f~, the second Casimir operator.:l2 vanishes 
identically and the first operator admits discrete 
spectrum for c = 0: 

.:ld~ = -2(k~ - 1)/:. 
If we put L = ko - 1, the result agrees with that 
derived in Sec. 5. 

For applications to physical problems with the 
SO(p, q) symmetry, the derived discrete most de­
generate representations DL(H:) or DL(H;) are es­
pecially convenient due to the facts that 

i. The maximal set of the commuting operators is 
maximally reduced in these representations of 
SO(p, q) groups. That is, for the discrete most de­
generate representations of the SO(p, q) group, 
the maximal set of commuting operators in the 
enveloping algebra consists of 

c = {.:l[SO(P)], .:l[SO(P - 2)], ... , MSO(4)], 

,,- .:l[SO(P)], .:l[SO(P - 1)], .:l[SO(P - 3)], ... , .:l[SO(4)], 

for p even} , 

for podd 

(J = {.:l[SO(q)], .:l[SO(q - 2)], ... , .:l[SO(4)], 

• - .:l[SO(q)], .:l[SO(q - 1)], .:l[SO(q - 3)], ... , .:l[SO(4)], 

for q even} , 

for q odd 
(7.8) 

k = 1,2, ... , [!Pl} , 
l = 1, 2, ... , [!q] 

11 M. A. Naimark, Linear Repre8entationa of the Lorentz Group (Pergamon Press, Inc., New York, 1964), p. 167. 
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FIG. 7. Representation D.L(H',). 

where a[SO(p, q») represents the Casimir operator 
of SO(p, q), and Cp and Cq the sequence of corre­
sponding Casimir operators of the maximal compact 
subgroup SO(p) X SO(q). The set H contains opera­
tors of the Cartan subalgebra except when p and 
q are odd, in which case H represents the maximal 
Abelian compact subalgebra of SO(p, q) (see Table 
I). 

The number of operators contained in the maxi­
mal set of commuting operators in the enveloping 
algebra for the discrete most degenerate representa­
tions of SO(p, q) is equal to 

N = p + q - 1, 
while the corresponding number for principal non­
degenerate representations is 

N' = !(r + l) = l[N(N + 1) + 2l], 

where rand l are the dimension and the rank of 
SO(p, q), respectively. 

ii. The additive quantum numbers may be related 
to the eigenvalues of the set H. It turns out that the 
set H is largest in the biharmonic coordinate system, 
which we have used. 

iii. The eigenfunctions of the maximal commuting 
set of operators are given in explicit form by formulas 
(3.17), (4.7), and (5.6); the range of the numbers 
L l l2 , ••• , lliPIl 12 , ••• , 11;«" ml , ••• , mllp lI mil '" , 
milo', which may play the role of quantum numbers, 
is determined by (3.20), (3.24), (4.9), and (5.9). 
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APPENDIX 
THE MOST DEGENERATE REPRESENTATIONS 

OF THE COMPACT ROTATION GROUP SO(P) 

The most degenerate representations of the com­
pact rotation group 80(p) were derived in Refs. 15 
and 22. In this Appendix, we briefly review the main 
results, and we prove the irreducibility and unitarity 
of these representations. 

For an arbitrary compact rotation group 80(p), 
there exist the most degenerate representations on 
the finite-dimensional Hilbert space X(X) of fune­
Hons, the domain X of which is the following Cartan 
symmetric space of rank oneo 

X"H = SO(P)/80(P - 1). (AI) 

The model of this space is a (p - I)-dimensional 
sphere 8'/)-t 

(A2) 

imbedded in p-dimensional Euclidean space W. 
Introducing the biharmonic coordinate system on 

the sphere 81'-1 by formula (3.6) or (3.7), we can 
calculate the metric tensor Uafj(8'l1-1

) on the sphere 

[ 
1 a. (2.-3) .0' .Or a m! 

• (2. 3) .Or .... !Ul' sm IF cos IF ".or - -r-{}. sm IF cos IF fJU VV cos 

81'-\ and, for the Laplace-Beltrami operator Ll(8'>-l) 
defined by (2.1), we then obtain 

Ll(82r- 1) = (cos2 {}')-l ~ 
(atpr)2 

+ (sin~'-3 {}' cos D')-l ~ (sin2r - S t')' cos D') ~ oD' ~ O{}' 

Ll(82
.-

3
) + . 2 t'}' for p = 2r, r = 2, ••. (A3) sm 

and A(81
) = 02j(Qtpl)2 

A(82 ..... == (sin2r-1 D'+I)-l _0_ ( . 2'-1 DrH) _o_ 
J oDr+l sm 0{},+1 

A(S2r-l) + . 2 {}t+l for p = 2r + I, r = 1,2, •.. , (A4) sm 

where A(82r
-

3
) and Ll(82r

-
1

) are again invariant 
operators of 80(2r - 2) and 80 (2r) , respectively. 
Using induction, both operators A(82,-3) and 
A(82'-1) can be decomposed in the same way as 
A(~-l) in (AS). The eigenvalues Afi1'! of the La­
place-Beltrami operator on the sphere 81'-1 are of 
the very well-known form 

(A5) 

Due to the inductive construction of the Laplace­
Beltrami operators, we can separate variables in the 
eigenvalue problem for the operator Ll(8,,-1). Thus, 
we obtain the differential equations: 

- l'-lCl,-1 + 2r - 4) + l (l + 2 - 2)J.'ol. (D') == 0 if p == 2r sin2 (j' r. r ........ 1,-. (A6) 

- l,(l~~ !~+-; 2) + l,+I(l'+1 + 2r - 1)]' ",:;+J(D,+l) == 0, if p = 2r + 1. (A7) 

Solutions of the equations (A6) or (A7) belonging to the Hilbert space of square integrable functions 
with respect to the measure 

{
IT cos (.".~ ·sin (2i-3) (D")· dD~' IT dtpl for p = 2r, 

dJl (w) = [g(~-l)1t dw = k-2 k-l (AS) 
, r 

sin2.-1 (D,H) dt'},+l IT cos ({}k) ·sin(2lo-3) (Dk) ·dlJl<· IT dtpk for p = 2r + 1, 
k-2 k-l 

are given as follows: 

n N. Ya. Vilenkin, Tr. Mosk. Mat. Obshch. 12, 185, (1963). 
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For p = 2r, r = 2, ... 

1/I!:,.,,_,(iJ') = tan11r
- d tJ' cos"tJ'· 2FI[!(\l.-II- l. + m.), !(\l.-d - l. - m.); l,_1 +r - 1; -tan1tJ'], 

(A9) 

for p = 2 

where l., l'_I' and m. are restricted by the condition 
of square-integrability of solutions of (A3), i.e., 

-l, + Il.-II + Im,l = -2n, 

n = 0, 1, ... , [!l,] (AI0) 

and for p = 2r + 1, r = 1, 2, .. . 

1/I::+1(tJ,+I) = tan" tJ,+l· cosl ,+. 1]'+1· 2F I[!(l, - l,+I); 

!(l. - l'+1 + 1); l, + r; -tan2 tJ'+I] (All) 

with the restriction 

l, - l'+l = -n n = 0,1, ... , 1,+1' (AI2) 

Both solutions (A9) and (All) can be expressed 
in terms of d-functions20 and exponential functions. 
The basis of the Hilbert space XC'S"-I)[Je'+'(S"-I)] 
is then given by expressions in (3.18). 

A. Irreducibility 

(A) p = 2r, r = 1, 2, .... The proof is based on 
induction. The representation D""(SI) of the group 
SO(2) is irreducible on the one-dimensional space 
X""(SI) determined by the vector 

y .... (I/) = (211rl exp (imlc/). 

Let us suppose that the representation D I '-'(S,,-3) 
is irreducible on X I '_'(S,,-3), and then let us show 
that the representation D"(S"-I) must be irreducible 
on XI,(S"-I). Denoting X::_ ..... , = XI '_'(S,,-3) @ 
Xm'(SI), we can represent the space XI'(S"-I) in 
the form 

(AI3) 

(L ..I.I,.I,-.){ ) 
1'-1,,.-2"1',,,,,. ,0 'W 

FIG. 8. Representation DI'(S2r-1). 

-"',. 

where the sum is taken over all such integers l,_I, m" 
which satisfy the condition 11,-11 + Im,1 + 2n = 
1" n = 0, 1, 2, .. , , [!l,]. (In the following we use 
the convention ['-I = ml for r = 2.) The decomposi­
tion (A13) is represented by the net in Fig. 8, 
where the nodes correspond to the subspaces 
X::_,.m,' Hence, to prove the irreducibility of 
the representation DI,(S,,-I), it is sufficient to show 
that the vector (L,-I.,-2cf>!:;.I,;-')(W) has nonvanish­
ing components in all four possible neighboring 
subspaces X::_.±I .... ,±I. Here L,-I.,-2 is defined by 
(6.2) and 

_ .,.1, (tJ') yl ...... I,-, ( 1 _Q2 
- 't'm,..lr-l • "'1 ••••. m,.-1 cP ,v, ... 

= (1,-1 + m, - 1,)(1'_1 + m, + 1r + p - 2) A (1 )A ( )[N(l,-I + 1)Ji 1,./,-.+1 
21'-1 + p - 2 + ,-I + m, N(l,_I) Z ... ,+1 (w) 

+ (21-1 + p - 4)·A (l )A (m)[N(l,-1 - 1)JiZI,.I,-.-I() 
, - ,-1 +, N(l,-I) ... ,+1 w 

+ (['-1 - m, - l,)(l, 1 - m, + 1, + p - 2). A (1 )A ( )[N(l,-I + I)JiZI ,.I,-.+I( \ 
21'-1 + P - 2 + ,-1 - m, N(l'_I) ... ,-1 WJ 

+ (21'-1 + P - 4) 'A_(['_I)A_(m,>[N~(;'_J 1) TZ!:;~i-'-I(W)' (A 14) 
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where 

zl.·Ir-'tw) = (2~'\-I'l.lr.Ir-'t ) _ (2i)-I.l.Ir.Ir-,t ~ 
tnr \' ,J ¥'mr. +1 \W "I'm,. .-1 ,CU,. 

The coefficients A±(l,_,) are defined by the expres­
sion (6.7), A±(m,) = (2i)-\ and N(l'_I) = N'_I is 
defined by (3.21). 

The coefficients in the expression (AI4) do not 
vanish for any two nonnegative integers 1,-1, m, 
satisfying the condition IIHI + Im,1 + 2n = I" n = 
0, 1, ... , [!1,], except A_(1,_2) for 1'-1 = 1. How­
ever, the mapping 

L .. - 1 ,r-e 

X!: .. , ~ :JC!:"r±1 
is possible as the operator L,-I .• -2 is skew-sym­
metric on xlr(SP-i) and (L'_I.r-241!:;~I.o, Z!:;I) ~ 0, 
where 41!:;~I.O E ~:"rU and Z!:;I EX!:"". 

(B) p = 2r + 1, r = 1, 2, .... Using the operator 
L'+1., and the element 

41lr.lr-,(w) 

where 12 , ••• , 1'-1 take the minimal possible values, 
we prove the irreducibility of the representation 
D"+'(Sp-I) on the space xlr+,(~-I) from the ir­
reducibility of the representations D" (sP- 2

) on 
X Ir(S"-3) as before. The irreducibility of the rep­
resentations Dlr(SP-2) on x l '(S"-2) have been 
proved in the previous case. 

B. Unitarity 

Due to the left-invariance of the measure d,.,,{w) 
(A8) on the sphere S"-\ the representations 
D'r{sP-I ) and DIr+s{S"-I) are unitary. 
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This paper is devoted to the study of the statistical dynamics of the small amplitude coplanar 
vibrations of a compound pendulum consisting of N + 1 particles suspended in series by weightless 
strings in a gravitational field. All particles have the same mass m, except for the top particle whose 
mass is m{1 + ~); and all strings are of equal length. The behavior of this system in the limit in which 
N -+ co is of particular interest, because the maximum normal mode frequency is proportional to NlIl. 
In the limit N -+ co, asymptotic formulas with error estimates are obtained for the time dependence 
of the momentum autocorrelation function of: (1) the top particle when ~ = 0; (2) the bottom 
particle when ~ = 0; and (3) the top particle when N »~ » 1. 

A. INTRODUCTION 

RECENTLY a large number of investigations of 
the statistical dynamical behavior of systeIns 

of coupled harmonic oscillators have appeared in 
the literature. I-IS The object of this work has been 
to gain insight into the properties of time-relaxed 
correlations between small numbers of oscillator 
variables. Only three investigations1.3 •

6 have dealt 
explicitly with the dependence of correlations on 
the number of oscillators N as N approaches infinity; 
and all three were concerned with the same system, 
a one-dimensional model of a crystal with nearest-
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neighbor interactions and periodic boundary con­
ditions. The purpose of this paper is to study a 
different one-dimensional oscillator model with 
nearest-neighbor interactions in which there is an 
essential dependence of the momentum autocor­
relation on N. Our model, first considered by D. 
Bernoulli,19 deals with the small amplitUde coplanar 
vibrations of a compound pendulum consisting of a 
large number of particles suspended in series in a 
gravity field by means of weightless connecting 
strings. Figure 1 is a reproduction of the figures in 
the Bernoulli paper of 1732 showing the 2-, 3-, and 
co-particle chains. The restoring force on a dis­
placed particle in a Bernoulli chain is roughly pro­
portional to the number of particles suspended below 
it. Consequently, there is a significant difference 
between the dynamical behavior of a particle near 
the top of the chain and that near the bottom of 
the chain. Furthermore, the maximum normal mode 
frequency of the chain is proportional to the square 
root of the number of particles in the system. These 
properties are in marked contrast to those of the 
one-dimensional crystal modelG in which all particles 
are dynamically equivalent, and in which the maxi­
mum normal mode frequency approaches a constant 
as the number of particles in the crystal is increased. 

In the remainder of this section, we outline the 
calculations contained in the paper. They are based 
on the following solution to the general problem of 

19 D. Bernoulli, Commentarii Academiae Scientiarum 
~mperial.is Petropolitanae 6, 108 (1732); 7, 162 (1734). [This 
Journal IS cataloged under "Akad. Nauk SSSR, Leningrad" 
in Union List of Serials, W. Gregory, Ed. (W. H. Wilcox 
Company, New Yo~k, 1.943), 2nd ed.l These papers contain a 
treatment of the OSCIllatIOns of a double and a triple pendulum 
a figure depicting a five-particle pendulum, and the cla.ssi~ 
treatment of the continuum limit in which the Bessel function 
Jo(x) occurs. 
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FIG. 1. Reproduction of the figures in the Bernoulli paper 
of 1732 showing configurations of the 2- and 3-particle 
chains and of the continuum limit of the chain. 

calculating the normalized momentum autocorrela­
tion function of a particle in a coupled oscillator 
systemS

•
6 

N 

p,.(t) = L: X;, cos s.t, (1) 
• -1 

where Pn(t) is the normalized momentum autocor­
relation function of a particle n in a classical system 
in a canonical dist.ribut.ion at temperature T, 

p,,(t) = (P,,(t')P,.(t' + t»/(P;(t'». 

The coefficient X". is the amplitude of particle n in 
the 11th normalized normal mode vector, and s. is 
frequency of the 11th normal mode. Thus, the cal­
culation of Pn(t) requires a knowledge of the normal 
mode eigenfrequencies and eigenvectors. Our model 
is a Bernoulli chain consisting of N + 1 particles 
numbered from n = 0 to n = N starting at t.he 
bottom particle. The lengths of all connecting strings 
are equal to l; and the masses of all part.icles are 
equal to m except. for the topmost particle n = N 
whose mass is m(1 + tl). In Sec. B, we calculate the 
values of X". and s •. The values of X". and s. for 
the case in which the top mass is equal to the others 

have been obt.ained by Bottema.2o We have merely 
modified his calculation to account for the change 
in the mass of particle N. In Sec. C, we estimate the 
time dependence of the momentum autocorrelation 
in three particular cases and obtain rigorous bounds. 
on the errors in the estimates. The three cases 
treated are: (1) PN(t) when tl = 0, (2) poet) when 
tl = 0, and (3) PN(t) when N » tl» l. The exact 
formula for the momentum autocorrelation function 
of a particle in a Bernoulli chain of N + 1 identical 
particles (c:l = 0) is obtained immediately by sub­
stituting in Eq. (1) the values of X". and 8. ob­
tained by Bottema. The result can be written as 

1 N+l k. (Ln(k.»)2 
~" = N + 1 ~ N + 1 LN(k.) cos [(k.l/g)it], (2) 

where Ln(x) is the Laguerre polynomial of order N, 
the numbers k., II = 1, ... , N + 1, are the zeros 
of LN+1(X), and g is the gravitational constant. The 
estimates which are obt.ained in Sec. C for poet) and 
PN(t) are based on three observations. First., the sum 
of the coefficients of the cosine in Eq. (2) is iden­
tically equal to unity. Second, when the number N 
is large compared to unity, there is an asymptotic 
series21 for LN(X) which is uniformly valid in t.he 
oscillatory range 0 < x < 4N + 2 and which pro­
vides accurate values for k. and [LN(k.)f2. Third, 
when t.he asymptotic formulas are substituted in 
Eq. (2), the resulting sum is obviously related to 
an integral. There is a simple upper bound on t.he 
magnitude of t.he difference between the sum and 
the approximat.ing int.egral which involves the num­
ber of terms in the sum and the t.otal variat.ion of 
the integrand . 

Finally, in Sec. D, we discuss some of the results 
obtained for the Bernoulli chain; and we relate 
these results to those obtained in other models. A 
comparison of poet) and PN(t) when tl = 0 shows 
two extremes in the behavior of the momentum 
autocorrelation function. In the case of PN(t), when 
c:l = 0 and N » c:l » 1, there is a significant de­
pendence on the number of particles in the chain. 
The difference between the results in the last two 
cases illustrates the inhibiting effect of a large mass 
difference on the rate of transfer of momentum in. 
harmonic oscillator models. This inhibiting effect is 
of considerable interest and has been studied in 
simple crystal models where various correlation 
functions of a heavy particle have been shown to 

20 O. Bottema, Jahresber. Deut. Math.-Verein. 42, 42 
(1933). 

21 F. G. Tricomi, Differential Equations (Hafner Publishing: 
Company, New York, 1961), p. 190. 
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exhibit classic Brownian-like properties in the case 
of one_,·3.6.7 and three-dimensional9 crystals. 

B. NORMAL MODE EIGENFREQUENCmS AND 
EIGENVECTORS IN A BERNOULLI CHAIN 

Consider a Bernoulli chain, or compound pen­
dulum, consisting of N + 1 particles at equal dis­
tances l along a string suspended in a gravity field. 
The mass of the connecting string is neglected and 
we are only concerned with small transverse coplanar 
oscillations of the particles. The particles, numbered 
from 0 to N starting at the bottom, have the same 
mass m with the exception of the top particle which 
has the mass (1 + ~)m. The tension Si in the string 
between the ith and (i - I)th particle is given by 

Si = img, i = 1, ... ,N, (3) 

where g is the gravitational constant; and the tension 
SN+l in the string connecting the uppermost particle 
to the suspension point is given by 

SN+l = (N + ~ + I)mg. 

If we denote the transverse displacement of the 
particles from their equilibrium positions by Xi, then 
the net force on particle i is 

Si+l(Xi+l - xi)/l - Si(Xi - Xi-l)/l. 

The Hamiltonian for small amplitude vibrations of 
the system is 

N-l 2 2 
H = :Eli + PN 

i-O 2m 2m(I + ~) 
~ Si+l 2 SN+l 2 + ~ 2z (Xi+l - Xi) + 2z XN, (4) 

where Pi is the momentum conjugate to Xi' We 
transform the Hamiltonian to diagonal form by 
following the procedure used by Bottema20 in the 
case in which all masses are equal, ~ = O. First 
apply the following canonical transformation in (4) 

i = 0, 1, ... ,N - 1, (5) 

PN = (1 + ~)lmlPN' XN = (1 + ~)-lm-1QN' 
This yields for the Hamiltonian 

N N-2 

H = :E,.!P! + :E !",~(i + I)(Qi+l - Qi)2 

where 

.-0 i-O 

+ !"'~[QN/(I + ~)i - QN_l]2 

+ !",~(N + ~ + l)(e + l)-lQ;, (6) 

(7) 

To diagonalize the Hamiltonian (6), we construct 
an orthonormal transformation which diagonalizes 
the potential energy. The equations of the associated 
eigenvalue problem are 

-iQi-l + (2i + 1 - k)Qi - (i + l)Qi+l = 0, 

i = 0, .. , ,N - 2, 

- (N - 1)QN-2 + (2N - 1 - k)QN-l 

- N(1 + e)-iQN = 0, (8) 

-N(1 + ~)-iQN_l 
+ [2N(1 + efl + 1 - k]QN = O. 

In (8) the first N - 1 equations have the form of 
the recurrence relations of the Laguerre polynomials, 
LN(k), so that we may put 

Qi(k) = Li(k), i = 0, ... ,N - 2. 

Then we deduce from the Nth equation 

QN(k) = (1 + e)lLN(k); 

(9) 

(10) 

and consequently the last equation gives the eigen­
values k., 

NLN-1(k) - [2N + (1 + e)(1 - k)]LN(k) = O. (11) 

Applying the recurrence relation between LN_1(k), 
LN(k), and L N+1 (k), the eigenvalue equation can 
also be written as 

(N + I)LN+l(k) + e(I - k)LN(k) = O. (12) 

Clearly this equation has N + 1 roots k. which are 
separated by the zeros of LN(k). Thus, the com­
ponents of the eigenvectors of the equations are 

Li(k.) , 

i = 0, .,. ,N - 1; I' = 1, '" ,N + 1, (13) 

and 

(1 + e)fLN(k.). 

To normalize the eigenvectors we use the property22 
N 

:E (Li(k»' .-0 

= (N + 1) [ LN+l(k) :k LN(k) - LN(k) ! LN+1(k) J. 
(14) 

Combining the recurrence Eq. (8) with (12) and the 
relations22 

k(d/dk)LN(k) = N[LN(k) - LN-l(k)], (15) 
----

22 G. Szego, Orthogonal Polynomials (American Mathe­
matical Society, New York, 1939), Chap. 5. 
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and 

(IS) 

we obtain for the components X;, of the normalized 
eigenvectors in Eq. (11) 

terms of /I with the aid of the following asymptotic 
formula for Laguerre polynomials of large order21: 

exp (-,k)LN+l(k) "" (-It+l[1I'(N + I) sin 28r' 

X sin [(N + !)(28 - sin 20) + 111'], (21) 
X;, = k![~(l + ~)k! - 2~k.(N + ~ + 1) 

+ (N + ~ + lY~riL;(k.)/LN(k.), 
i = 0, ... ,N - 1 

where 0 = cos-1 [k/(4N + 6)]1. The asymptotic 
formula is valid in the interval E ::; k/(4N + 6) :::; 1, 

(17) where E is a fixed positive number, and the correc­
tion term is proportional to N-t. The zeros of 

and LN+1(k) correspond to those values of 8 for which 
X

N
• = (1 + ~)lk![e(1 + e)k~ the argument of the sine function in Eq. (21) is a 

multiple of 11', 
- 2~k.(N + e + 1) + (N + ~ + IY'ri

. (N + !)(28. _ sin 28.) + 111' = (N + 2 - /1)11", 
Now the transformed Hamiltonian is written 

v = 1, ... ,N + 1 (22) 
N+I 

H = 1: !ep! + s!q!) , (18) or 

where 

.-1 
N 

P. = 1: X;.p .. 
1-0 

N 

q. = 1: XI.Q •. 
1-0 

The values of XL and s! in Eqs. (17) and (18) 
reduce to the values obtained by Bottema for e = 0, 

and 

s! = w~k., /I = 1, ... , N + 1 

where k. is the vth zero of LN+l(k). 

C. EXPLICIT TIME DEPENDENCE OF THE 
MOMENTUM AUTOCORRELATION FUNCTION 

The explicit time dependence of the momentum 
autocorrelation function will be determined in three 
particular cases (1) 'PN(t) when tl = 0, (2) Po(t) 
when e = 0, and (3) PN(t) when 1 « tl « N. In 
each case, the procedure is based on the three 
observations listed in Sec. A. 

1. eN(t) When e = 0 

The expression for PN(t) when e = 0 follows from 
Eq. (2) and can be written as 

4 N+I k 
PN(t) = N + 1 [1 + HN + If

l

1 ~ 4N + 6 

X cos [WO(4N
k+ 6Y(4N + 6)'t] , (20) 

where w~ = gil, and k. is the vth zero of LN+lCk). 
In the limit N » 1, the N + 1 zeros of L N +1(k), 
when normalized to 4N + 6, fill the interval (0, 1). 
In this limit the k.'s can be expressed implicitly in 

1 2 [ -I ( k. )t 
-; cos 4N+6 

- (4N
k+ 6y(1 - 4N k+ 6YJ 

= ~ ~ 11 - 2N ~ 3 (N ~ i I)· (23) 

Equation (23) relates v to k./(4N + 6). In the limit 
N» 1, the last term on the right-hand side can be 
neglected. In order to estimate the time dependence 
of PN(t) , we determine the integral for which the 
right-hand side of Eq. (20) is the discrete approxi­
mation. The integral in this case is 

o(t) = f 4w2(/L) cos [wCu.)wo(4N + 6)it] dp., (24) 

where the sum is based on the points 

v = 1, ... ,N + 1, 

and where w2 (/L) = k./(4N + 6) is related to /L by 
the limiting form of Eq. (23) for large N, 

p. = 1 - ~ [cos-1w(/L) - w(/L)[l - w2(p.)]i]. (25) 11' 
Thus, the discrete approximation for O(t) is 

4 N+l ( _10) 
PN(t) ::: N + 1 t; w2 ~ + \ 

X cos [ w(N ~ i1)wo(4N + 6)!t] , (26) 

where we have ignored the term (1/2)(N + 1)-1 in 
the coefficient of the sum in Eq. (20). The magnitude 
of the difference between the integralO(t) in Eq. (24) 



                                                                                                                                    

MOMENTUM AUTOCORRELATION FUNCTION 1881 

and the sum for PN(t) in Eq. (26) satisfies the following inequality23: 

Id(t) - PN(t) 1 ~ (N + l)-I'l)(N, t), (27) 

where 'l)(N, t) is the variation of the integrand in the interval (0, 1). In the present case, where the 
derivative of the integrand in (20) is a continuous function of p. and w(p.) is an increasing function of 
p, the variation 'l) (N, t) is 

'O(N, t) = { I:p. {4w2(p.) cos [wow(p.)(4N + 6)lt] I I dp. 

11 1 . 1 dw(p.) = 4 12 cos [wow(p.)(4N + 6)lt] - w(p.)wo(4N + 6) t sm [wow(p.)(4N + 6) t]1 w(p.) -d- dp., 
o p. 

and satisfies the following inequality 

~(N, t) ~ 4 i 1 

[2 + w(p.)wo(4N + 6)lt]w(p.) d~:) dp. 

~ 4[1 + !wot(4N + 6)i]. (28) 

Combining Eqs. (28) and (27), and neglecting N-1 

compared to unity, one obtains 

Id(t) - PN(t) 1 ~ 4N-1 + (8/3)wotN-1. (29) 

The initial value of PN(t) is unity. Therefore, it 
follows from Eq. (29) that the integral d(t) is a useful 
approximation for PN(t) provided that 4N-1 + 
(8/3)wotN-1 can be neglected when compared with 
aCt). 

The integral d(t) in Eq. (24) is easily evaluated 
after changing the variable of integration from p. 

to w using Eq. (25) 

aCt) = 16'11"-1 11 w\l _ w2)1 

X cos [wwo(4N + 6)lt] dw (30) 

d2 

= -8 ([;.i [J1(r)/r]I._(4N+6)I ... I. 

The integral d(t) in Eq. (30) is a damped oscillating 
function ofthe time whose period is equal to 'll"w;IN-l 
and whose initial value d(O) is equal to unity. It is 
clear that when the amplitude of the oscillating 
function aCt) is comparable with 4N-1+ (8/3)wotN-t, 
the function d (t) does not provide any useful infor­
mation concerning the autocorrelation function 
PN(t). This condition is reached at t = w;IN-11lO

, 

where d(W;IN- 1/10
) is proportional to N- 3/5 and 

where Id(w;IN-1I10
) - PN(W;IN- 1/10

) 1 ~ (8/3)N-3/5
• 

Consequently, we may conclude that 

PN(t) = -8(d2 /dl)[r -I J 1( r)] I •• (4N+6) 1",.1 

for 0 ~ wot ~ N- 1I5
• (31) 

sa G. Polya and G. Szegii, Aufgaben und Lehrsiitze aU8 der 
Analysis (Springer-Verlag, Berlin, 1964), 3rd ed., Vol. 1, p. 37. 

In this limited time interval, the difference PN(t) -d(t) 
satisfies the inequality, 

and in the neighborhood of t = w;IN- 1I5
, the ampli­

tude of PN(W;IN- 1/5
) is 

2'11"-1/2 N- 9/26 , 

a number which may be regarded effectively as zero, 
but which is nevertheless large compared to the 
upper bound of IPN(t) - d(t)l. Thus, we have shown 
that, in a Bernoulli chain composed of N + 1 iden­
tical particles, the momentum autocorrelation func­
tion of the top particle is approximated accurately 
by Eq. (31) in the time interval 0 < t < w;IN- 1/5

• 

The difference between Eq. (31) and the exact value 
is less than N-7/10 throughout the interval. The 
number N-7/10 is small compared to the amplitude 
of oscillation of the autocorrelation function; and 
the amplitude of oscillation at t = w;IN- 1/5 is 
2'11" -IN-9120

, which is effectively zero. 

2. eo(t) When t} = 0 

The expression for Po(t) when e = 0 follows from 
Eq. (2) and is 

N+l 

poet) = (N + 1)-2 L k.[LN(k.)r2 cos (wok~t). (32) .-1 
The factor [LN (k.)r 2 is a relatively smooth function 
of P, since the maxima (or minima) of LN(k) are 
located near the k,'s, the zeros of LN+l(k). The 
asymptotic formula for [LN (k.)r2 has been obtained 
in the Appendix, and its value is 

( 
k. )-1 

X 1 - 4N + 6 exp (-k.). (33) 



                                                                                                                                    

1882 R. J. RUBIN AND P. ULLERSMA 

Substitute Eq. (33) in (32) and obtain 

N+l ( k )l( k )-1 
poet) = 2", ~ 4N -+ 6 1 - 4N -+ 6 exp (-k.) cos (wok!t). (34) 

Clearly, in Eq. (34) the high frequencies do not contribute significantly to poet) because of the pres­
ence of the factor exp (-k.). With one minor modification, we proceed as in the case of PN(t) and 
introduce the integral ~(t), for which the right-hand side of Eq. (34) is the discrete approximation, 

~(t) = {2",NW(IL)[1 - W2(IL)r1 exp [-(4N + 6)w2(1L)] cos [wow(IL)(4N + 6)lt] dp., (35) 

where W(IL) and p. are defined as in Eq. (24). The minor change is in the upper limit of the integral. 
We omit the last (1/2)N frequencies from the sum in (34) and the integral in (35). The contribution of 
these terms to PoCt) is negligible; and by excluding the point p. = 1, the total variation of the integrand 
in Eq. (35) is finite. Thus, the magnitude of the difference poet) - ~(t) is 

IPo(t) - ~(t)1 ~ N ~ 1 f I:IL {[12::.N:2~)]1 exp [-(4N + 6)w
2
(p.)] cos [(4N + 6) lwo tw(p.)]} 1 dp. 

~ 2", f d~~) {[I - w
2
(p.)rl Id: (W(IL) exp [-(4N + 6) w

2
(p.)]) \ 

2 [(4N + 6)lwot W(p.)]} + w(p.) exp [-(4N + 6)w (p.)] [1 _ w2(p.)]! + [1 _ w2(p.)]i dp.. 

When the independent variable is changed from p. to win (36), the inequality can be written as 

110(1) { \ d \ IPo(t) - ~(t)1 ~ 2", ° (1 - w2)-1 dw {w exp [-(4N + 6)w2]) 

or 

IPo(t) - ~(t) I ~ [1 _ 2:2(!)]t {{2(4N
1 + 6) Te-1 - w(!) exp [- (4N + 6) w

2 
(!)] } 

(36) 

+ ",wot 1 - exp [-(4N + 6)w2m] + 2 [1 - w2mrt 1(4N+6)'1O(!) 2 (2) d (37) 
[1 _ W2(!)]t (4N + 6)t '" (4N + 6)4 ° x exp -x x, 

IPo(t) - ~(t) I ~ [1 _ :l(!)]t [(~y + !wot ]N-!. 

Thus the error made in replacing poet) by ~(t) is at most ,.,..N-3
/

8 in the time interval 0 < t < w;;lN1Is
• 

The integral ~(t) is 

1
10(1) 

~(t) = 8N ° w exp [-(4N + 6)w2
] cos [(4N + 6)iWotw] dw 

(38) 

1
2N' ''(1) 

= 2 ° v exp (_v2
) cos (Wotv) dv. 

It can be seen in Eq. (38) that there is a negligible dependence of ~(t) on N for N » 1. Therefore, we 
extend the range of integration to infinity and integrate by parts to obtain 

~(t) = 1 - wot i'" exp (_v2
) sin (wotv) dv 

(39) 
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The initial value of ~(t) in Eq. (39) is ~(O) = 1 and 
the asymptotic value24 for t » W;;-I is 

~(t) '" _2w;;-2C2• (40) 

At intermediate values of t, it is readily verified from 
a table of numerical values of Dawson's integral,25 

exp (- x2
) { exp (y2) dy, 

that there i'3 only one zero of ~(t). This zero occurs 
for t = 1.S4 W;;-I. For t '" w;;-INl/S

, the value of ~(t) 
is ",N-1/4

• We therefore conclude that, in the time 
interval 0 < wot < NilS, the momentum autocorrela­
tion function of the bottom particle in the Bernoulli 
chain is 

ri ... ' 
poet) = 1 - wot exp (-lw~t2) J

o 
exp (x2) ax. 

The error in poet) is at most ",N-3/8
; and, except in 

PN(t) = 4~ ! ~) [1 + !(N + I)-I] 

the vicinity of the zero of poet), the magnitude is 
",N- 1/4 or greater. 

It is also known that, in any system of coupled 
oscillators, Pn(t) is the velocity of particle n at time 
t for a special initial condition of the entire harmonic 
oscillator systeml5

: the condition in which all dis­
placements and velocities are zero except for the 
unit velocity of particle n. Thus, the displacement 
of particle n at time t is the integral g Pn(T) dT. In 
the present case, the maximum displacement of 
particle n = 0 occurs at t = 1.S4 W;;-I when the 
velocity is zero. Subsequently, the particle returns 
monotonically to its equilibrium position. 

3. !/N(t) When 1 « e «N 
The expression for PN(t) can be obtained by sub­

stituting Eq. (17) for X N •• in Eq. (1). The result can 
be written as 

N+I (4N k.+ 6) cos [(4N
k
.+ 6Ywo(4N + 6)i tJ 

X ~ 16e(e + 1)[1 + !(N+l)-IY(4;'+6Y - Se[1 + (N+l)-I](1 + N~I)(~'+6) + (1 + N~lr' 
(41) 

where k., p = 1, .,. , N + 1 are the N + 1 zeros of 
the polynomial 

Because the zeros of LN(k) interlace the zeros of 
LN+I(k), it can be shown that a zero of <PN+I(k) is 
located between each pair of zeros of LN+I(k). In 

addition, <PN+I(k) has one root which is smaller than 
the smallest root of LN+l(k) when e > O. Therefore, 
in the limit N » 1, the roots of <PN+I(k), when 
normalized to 4N + 6, fill the interval (0, 1). Con­
sequently, an integral can be constructed for which 
Eq. (41) is the discrete approximation. This integral 
is the analog of Eq. (30) for d(t) in the case of 
the perfect Bernoulli chain 

(43) 

It is readily verified that when e = 0, X(t) is equal to d(t). In deriving Eq. (43) we have assumed only 
that N» 1 and 0 < e/(N + 1) « 1. The magnitude of the difference PN(t) - X(t) can be shown to 
satisfy the inequality 

/ (t) - X(t)/ < 4(1 + e) rl 
/1:.... w

2
(p.) cos [w(p.)wo(4N + 6)it] I d 

PN - N + 1 Jo dp. 16e(e + l)w4(p.) - sew2(p.) + 1 p. 

4 { H(e + 1)/e]1I e + 1 II ( (e + l)w2 dw } 
~ N 1 - [e/(e + l)Jt - 16e + (4e - 1)2 + 2N wot Jo 16e(e + l)w4 

- sew2 + 1 . 
(44) 

:M A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill Book 
Company, Inc., New York, 1953), Vol. 1, p. 278. 

:II Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, Eels. (National Bureau of Standards, 
Washington, D. C., 1964), p. 319. 
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When ~» 1, the inequality (44) simplifies to where 

\PN(t) - X(t) \ ~ UJ./N + (1r/2Ni)wot. (45) 

This error bound is identical in form with that ob­
tained in the case ~ = O. Although we have not 
been able to evaluate X(t) in Eq. (43) in terms of 
known functions for arbitrary values of ~ > 0, we 
can evaluate xCt) in the limit ~» 1. 

The problem of evaluating XCt) in the limit ~» 1 
is relatively simple, because the factor 

D(w) = 16(~ + 1)w2[16~(~ + 1)w4 
- 8~W2 + lr1 

has a very sharp and large maximum at Wm = 
[16~C~ + lW l ~ Cl/2) ~-i. The value of D(wm ) is 

D(wm) = 2[( ~ + 1)/ ~]i[1 - [~/( ~ + 1)]ir1 (46) 

or 

D(!~-i) ~4~, for ~»1. (47) 

Start with the identity 

X(t) = 7r -1 i~ D(w) cos (WT) dw 

+ 7r -1 f [(1 - w2)i - I]D(w) cos (WT) dw 

- 7r -1 i~ D(w) cos (WT) dw, (48) 

where T = (4N + 6)iwot. One can show for ~ » 1 
that: (1) the second integral in Eq. (48) is less than 
(t + 1/7r) ~-1 because the integrand is small at 
W m ; and (2) the third integral is less than (7r~)-1 

because Wm lies well outside the integration interval 
The first integral is a known cosine transform,26 so 
one obtains 

• [ T sin 8 ] [ T cos 8 ] 
X sm 8 - 2(~2 + ~)t exp .- 2(~2 + ~)t , 

(49) 

cos 28 = -[~/(~ + 1)]1. 

In the limit ~» 1 where sin 8 ~ 1, cos 8 ~ (1/2) ~-i, 
and 8 ~ 7r/2 - (1/2) ~-i, the expression for X(t) 
simplifies to 

xU) = exp [-Niwot/2~] cos [Niwot/ ~i]. (50) 

We therefore conclude that, in the time interval 
o < wot < N-l/S, the momentum autocorrelation 
function of a very heavy particle at the top of a 
Bernoulli chain is 

PN(t) = exp [ - Niwot/2~] cos [Niwot/ ~i]. (51) 

The error in PN(t) arises from the replacement of PN(t) 
by X(t), and from the approximations made in eval­
uating X(t). The first of these errors is clearly small 
compared to PN(t) in the time interval 0 < wot < N-l/5 

when N » ~ » 1. The approximations made in 
evaluating X(t) limit the usefulness of the result to 
the sub-interval of 0 < wot < N- 1

/
5 in which PN(t) 

is appreciable compared to ~-1. When N » 1 there 
is no appreciable difference between poet) for ~ = 0 
and poet) for ~» 1. 

D. SUMMARY AND REMARKS 

We have shown that, in a perfect Bernoulli chain 
of N + 1 particles (~ = 0), the momentum auto­
correlation functions of the top and bottom particles, 
P,v(t) and poet), are radically different. In the former 
case, PN(t) decays in an oscillatory manner 

PN(t) = -8 d
2
2 (J1(T»)! ,0 ~ wot < N- 1I5 

dT T .-2N' .... 

(52) 

The amplitude of PN(t) in the neighborhood of 
t = w;1N-l is 47r- iN-1. In the latter case, poet) 
passes through zero only once (at t '" 1.84 W;1) and 
approaches zero from below 

poet) = 1 _. !W~t2 exp [-!w~e]1F1[!' !; !w~e], 
,...., _2W;2 t-2, for t» W;1. 

The value of poet) when t = w;1N1/8 is _2N-1/4
• 

Thus it is seen that not only the forms of PN(t) and 
PoCt) are different, but the times w;1N-1/3 and w;1N1/8 

at which the respective amplitudes decay to the 
value N- 1

/
4 are markedly different. In each case 

26 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. 
Tricomi, TabWi of Integral Transforms (McGraw-Hill Book 
Company, Inc., New York, 1954), Vol. 1, p. 9. 

PN(t) and poet) are discrete cosine transforms based 
on the same normal mode frequency spectrum. The 
presence in the transform of the highest frequencies 
(which are proportional to Ni) is apparent in the 
form of PN(t) but not in that of poet). The greater 
weight of the high-frequency components in PN(t) 
and the more rapid damping of the decay envelope 
of PN(t) reflects the physical fact that the nearest-
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neighbor interaction or coupling constants are pro­
portional to N in the vicinity of particle N. In the 
limit N ~ CX), the maximum frequency of the 
Bernoulli chain approaches infinity. To the authors' 
knowledge, there are only two investigations of sys­
tems of coupled harmonic oscillators in which in­
finite frequencies appear explicitly. These are a 
model of Brownian motion treated by Ford, Kac, 
and Mazur17 and a model of an elastically bounded 
electron interacting with the electromagnetic field, 
treated by Ullersma.18 In both investigations the 
case N = CX) was considered. The transition N ~ CX) 

was not pertinent to the problems posed. 
The properties of a heavy particle in a harmonic 

oscillator system are of interest in the theory of 
Brownian motion; and several systems have been 
studied.2.3.7.9.13.15.27 In the remaining case, we have 
determined the time dependence of the top particle 
in a Bernoulli chain when the mass m(I + e) of the 
top particle is large compared to the mass m of the 
other particles. The expression derived for PN(t) is 
characteristic of a classical Brownian oscillator. It 

can be written as 

PN(t) = exp [-nt/2e1] cos [nt] + ~(t), (53) 

where n = N1wo e-1 and where ~(t) satisfies an 
inequality of the form 1~(t)1 < ce-1 with c of order 
unity. Thus, the first term in Eq. (53) is a useful 
approximation for PN(t) as long as c e-1 is small 
compared to exp [- nt/2 el]. It is clear from a com­
parison of Eq. (53) with (52) that the effect of 
increasing the mass of particle N is to inhibit the 
transfer of momentum between N and the rest of 
the chain. In addition, the effective frequency of 
oscillation is decreased. Similar behavior has been 
found in the case of a heavy isotope in a three­
dimensional crystal model. 9 

APPENDIX 

Consider the problem of calculating the asymp­
totic formula for [LN (k.)r2 when N » 1 and k. is a 
zero of L N + 1(k). Using the asymptotic formula given 
in Eq. (21), the expression for [LN (k.)r2 can be 
written as 

(AI) 

Equation (AI) can be simplified by expanding the factors containing [(4N + 6)/(4N + 2)] in powers 
of N- 1 

[(4N + 6)/(4N + 2)]' ~ 1 + I/2N, 

cos-1 {w.[(4N + 6)/(4N + 2)]'} ~ C08- 1 
W. - (2N)-1w.(1 - w!)-l, 

{I - w;[(4N + 6)/(4N + 2)]}t ~ (1 - w;)t - (2N)-1w!(1 - w!)-l, 

and introducing the factor 2N + 3 in the argument of the sine function. The result is 

[L (k )r2 2N7rW.(1 - w~)l exp [-(4N + 6)w!] 
N. "" sin2 {(2N + 3)[cos 1 W. - w.(l - w~)!] - 2 cos-1 

W. + p.}' 

But, from the definition of k., we have for N » 1 

(A2) 

(A3) 

(A4) 

(A5) 

sin2 {(2N + 3)[cos-1 w. - w.(l - w~)!] + 111' - 2 cos-1 w.} = sin2 (2 cos-1 w.) = 4w!(1 - w!). (A6) 

Therefore the asymptotic formula for [LN (k.)r 2 reduces to 

27 R. J. Rubin, J. Am. Chem. Soc. 86, 3413 (1964). 
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A general form of the l invariants of compact semisimple local Lie groups or rank l, as the traces of 
the powers of the "velocity potential" operator is suggested. The connection of this form of the in­
variants with those of Ref. 3 is described. The possible generalization beyond those of adjoint group 
and its connection with that of Biedenharn is discussed. 

SEVERAL attempts have been madel-a in recent 
years to obtain the invariants of semisimple 

local Lie groups. They all consist in generalizing 
Racah-type invariants and to show that there are 
only l independent invariants for a group of rank 
l. Such invariants have been constructed in the 
earlier literature for the special case of adjoint 
groups'. The inadequacy of these invariants, es­
pecially to suit the covariant and contravariant 
representations, has been pointed out in Ref. 1. 
The object of this paper is to show that the nth­
order invariants of the semisimple local Lie group 
of rank l can be expressed as the nth-power spur of 
the velocity-potential U operator of the group of 
infinitesimal generators. Also, it is shown that since 
this velocity potential operator has always an ex­
pansion in terms of the self-representation of the 
infinitesimal generators, one can always choose the 
self-representation for the infinitesimal generators 
without loss of generality. The connection of the 
present work with that of Ref. 3 is given. The tensor 
behavior of U is pointed out. We essentially follow 
the treatment of Ref. 4 for notation and subject. 

Since we are going to deal with the "velocity 
potential" of the adjoint group, let us first introduce 
its properties here. The "velocity potential" is de­
fined to be 

(1) 

* On leave of absence from the Institute of Mathematical 
Sciences, MATSCIENCE, Madras, India. 

1 L. C. Biedenharn, J. Math. Phys. 4, 436 (1963). 
1M. Umezawa, Nucl. Phys. 48, 111 (1963). For similar 

connected work, also refer to: M. Micu, N ucl. Phys. 60, 353 
(1964); A. M. Perelomov and V. S. Popov, Soviet Phys.­
JETP Letters 1, 6 (1965); and F. Halbwachs, CERN pre­
print 65/1585/5(TH.617). 

3 B. Gruber and L. O'Raifeartaigh, J. Math. Phys. 5, 1796 
(1964). See also, for a detailed discussion: L. O'Raifeartaigh, 
Lectures on Local Lie Groups and Their Representations, 
MATSCIENCE Report 25 (The Institute of Mathematical 
Sciences, Madras, India). 

4 L. P. Eisenhart, Continuous Groups of Transformations 
(Dover Publications, Inc., New York, 1961), Chap. IV, p. 155. 
See also L. C. Biedenharn, Lectures in Theoretical Physics, 
W. E. Brittin, B. W. Downs, and J. Downs, Eds. (Inter­
science Publishers, Inc., New York, 1963), Vol. 5, pp. 347-349. 

where the q/s are the transformation functions of 
the Lie group. In fact, as is well known, the whole 
analysis and the classification of continuous groups 
are accomplished by the study of U. The infinitesimal 
generators of the group X are defined by 

E . a 
X = U'(x)-· p ; pax; (2) 

The functions cp are analytic and have an expansion 

cp,,(x, y) = x" + y" + a;'Yxpy'Y + fx 2y + .... (3) 

The structure constants of the group C;'Y are related 
to a's through the relation 

(4) 

These concepts are indeed well known and are 
introduced just for continuity and notation. The 
U operator for the group 0(3), for example, looks 
like 

o +z -y 

U;(x) -z 0 x x; (x,y,z). (5) 

y -x 0 

The adjoint group P of a group G is defined through 
the homomorphism of G on the group of matrices. 
So, to every element x E G, there corresponds a 
matrix pEP. The adjoint group of the infinitesimal 
group is called the infinitesimal adjoint group. 

Let us start with the Casimir operator 

(6) 

Now, if we want to express this as a trace which 
could later be generalized, we naturally introduce 
the concept of a matrix. This association is sometimes 
achieved by taking the adjoint representation in 
which 

(7) 

1886 
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so that 12 can be expressed as 

12 = Tr (~a ~)xax~. (8) 

We then look to replace the adjoint representation 
by some general representation, so that when 12 is 
generalized, it is really independent of the choice of 
the representation. What we want to emphasize is 
that we need essentially an association (whether 
with adjoint representation or otherwise) of (eX) 
with a matrix in order to express 12 as a trace. In 
other words, if we define 

(9) 

then 

(10) 

so that the generalized nth-order invariant may just 

o 
Iff = Tr -Xa o 

X2 -Xl 0 

(15) 

It is easy to show that, for 0(3), Ia = 1(12 ), so that 
there is only one Casimir operator for 0(3). 

Therefore, the method consists of first replacing 
the x's in the U matrix of the group [defined through 
Eq. (1) 1 by the infinitesimal generators of the group 
[defined in Eq. (2)]. Then take the traces of the 
powers of this new matrix. It is clear that the number 
of X's is indeed equal to the order of the group. It 
is also easy to see that trace (U)" is the same even if 
one permutes the X's in U. Of course, the choice of 
U(X) strongly indicates that the corresponding 
group function is 

be written as so that 

I" = Tr('7)". (11) 

These are, of course, known as the invariants of the 
adjoint group (see Ref. 4 for extensive information). 
The invariants are defined as the coefficients in the 
expansion of the characteristic equation 

A(X, p) = det ('7~(X) - P 8~) = 0, (12) 

as powers of p. The parameter p is supposed to define 
the invariant directions. The Killing theorem states 
that the coefficients 1/; in the characteristic equation 
of the group 

A(X, p) = p" - 1/;1(X)p.,-1 + ... 
+ (-1) 'l'-I1/;'l'_I(X)P, (13) 

are in fact the invariants of the adjoint group. Also 
it has been shown that there are only l independent 
1/;'s where l is the rank of the group. The operator 
'7(X) is just the operator (X ::::; %) defined in Ref. 3. 
These are velocity potential operators for the group 
of the infinitesimal generators X of the group. For 
the case of 0(3), the operator '7 is obtained by re­
placing, in the velocity potential U(x) of the group, 
the elements of the group by the infinitesimal genera­
tors. So, for 0(3) we get 

o Xa -X2 

'7 = -Xa o (14) 

X 2 -Xl 0 

which is in fact the operator (X X %) of Ref. 3. The 
invariants of the group are then 

and hence 

= U~U~ 

= g~"lX~X"I' 

The form of U'P(X), and hence that of ¢:(X, Y) 
immediately tells us that we are in fact dealing with 
the invariants of the adjoint group. 

Since U(X) is a transformation function, it can be 
shown to be a tensor operator. We will not discuss 
the completeness of these invariants and their ex­
plicit construction for special cases. These problems 
have been discussed in Ref. 3. 

Finally, it may be worthwhile to point out that 
if we want to generalize these invariants beyond the 
adjoint group, we can still retain the form 

I" = Tr (U)". 

But now, U's are defined through the relation 

where a's are not the structure constants. They are 
the second-order coefficients occurring in the ex­
pansion of ¢: for the general case. We know, how­
ever, that the structure constants are related to the 
a's by the relation 

= antisymmetric part. 
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Usually, in the normal parameter system, we make 
the symmetric part of a vanish so that a's, occurring 
in the expansion of cp/, can be replaced by the 
structure constants. The generalization of the gen­
eral invariants beyond those of adjoint group con­
sists in retaining both the symmetric and antisym­
metric parts of a; in other words, having the general 
expansion for cp'. In this case, 

a;., = !(a;., + a;,,) + !(a;T - a;,,) 
= !(d;., + C;.,) , 

where d;., are symmetric structure constants oc­
curring in the anticommutator of the X's, 

{X"" X,,} = d!"X." 

and C's are the usual structure constants (antisym­
metric) occurring in the commutator of the X's, 

[X"" X,,] = C!~.,. 

So, to conclude, the generalization of I" beyond the 
adjoint group is found to be 

I" = Tr (U)", 

, - l(d' + C' ) a",., - 2" "''1 "''1 • 

Incidentally, the a's are used by Biedenharn1 to 
construct the general invariants In. 

ACKNOWLEDGMENTS 

The author is grateful to Professor Abdus Salam 
and the IAEA for the hospitality extended to him at 
the International Centre for Theoretical Physics, 
Trieste. It is a pleasure to thank Dr. R. R8.9zka, 
Dr. Narayanasamy, and Dr. N. Limi6 for fruitful 
discussions. 


	JMP, Volume 07, Issue 10, Page 1749
	JMP, Volume 07, Issue 10, Page 1764
	JMP, Volume 07, Issue 10, Page 1771
	JMP, Volume 07, Issue 10, Page 1776
	JMP, Volume 07, Issue 10, Page 1782
	JMP, Volume 07, Issue 10, Page 1797
	JMP, Volume 07, Issue 10, Page 1802
	JMP, Volume 07, Issue 10, Page 1806
	JMP, Volume 07, Issue 10, Page 1821
	JMP, Volume 07, Issue 10, Page 1824
	JMP, Volume 07, Issue 10, Page 1833
	JMP, Volume 07, Issue 10, Page 1836
	JMP, Volume 07, Issue 10, Page 1841
	JMP, Volume 07, Issue 10, Page 1861
	JMP, Volume 07, Issue 10, Page 1877
	JMP, Volume 07, Issue 10, Page 1886

